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Abstract

The actual trend in parallel computing is building clusters with Commodity Off The Shelf (COTS) components. Because of standard communication adapters limits, System Area Networks (SAN) have been developed with the main purpose of supporting user-level communication systems. These eliminate operating system from the critical communication path, achieving very higher performance than standard protocol stacks, such as TCP/IP or UDP/IP.
This thesis describes a user-level communication system for a new System Area Network, QNIX (Quadrics Network Interface for LinuX), currently in development at Quadrics Supercomputers World. QNIX is a standard 64-bit PCI card, equipped with a RISC processor and up to 256 MB local RAM. This allows to move most part of the communication task on the network interface and to hold all related data structures in the QNIX local RAM, avoiding heavy swap operation to host memory. 
The QNIX communication system gives user processes direct and protected access to the network device. It consists of three parts: a user library, a driver and a control program running on the network interface.
The user library is the interface to the QNIX communication system. The driver manages the unique two operating system services, registration of user processes to the network device and virtual address translation for DMA transfers. The control program running on the network interface schedules the network device among requiring processes, executes zero-copy data transfers and handles flow control.

First experimental results show that the QNIX communication system achieves about 180 MB/s payload bandwidth for message sizes ( 4 KB and 3 (s one-way latency for zero-payload packets. Bandwidth achieved is about 90% of the expected peak for the QNIX network interface.
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Chapter 1

Introduction

For a long time High Performance Computing (HPC) had been based on expensive parallel machines built with custom components. There was no common standard for such supercomputers, so each of them had its own architecture and programming model tailored on a specific class of problems. Consequently while they were very powerful in their application domain, generally they performed very poorly out of it. Moreover they were hard to program and application codes were no easily portable from a platform to another. For these and other reasons parallel processing has never been exploited too much. Anyway the dramatic improvement in processor technology, jointed with the ever more increasing reliability and performance of network devices and cables, gives the parallel processing a new chance: to use clusters of workstations and even personal computers as an efficient, low cost parallel machine. 

Since cluster performance depends strictly on the interconnection network and communication system software, this new trend in HPC community has generated a lot of research efforts in such fields. So some years ago a new class of networks, the so called System Area Networks (SANs), specifically designed for HPC on clusters, began to appear. Such networks are equipped with user-level communication systems bypassing the operating system on all critical communication paths. In this way the software communication overhead is considerably reduced and user applications can benefit from the high performance of SAN technology. In the last years several user-level communication systems have been developed, differing in the types of primitives they offer for data transfers, the way incoming data is detected and handled, the type and amount of work they move on the NIC (Network Interface Card)  if it is programmable. 

This thesis describes the user-level communication system for a new SAN, QNIX (Quadrics Network Interface for LinuX), currently in development at Quadrics Supercomputers World. QNIX is a standard 64-bit PCI card, equipped with a RISC processor and up to 256 MB local RAM. This allows to move most part of the communication task on the NIC, so that the host processor is unloaded as much as possible. Moreover memory dimension allows to hold all data structures associated with the communication task in the NIC local RAM, avoiding heavy swap operation between host and NIC memory. The communication system described here consists of three parts: a user library, a driver and a control program running on the NIC processor. The library functions allow user processes to give commands directly to the network device, bypassing completely the operating system. The driver is responsible for registering to the NIC the processes will need network services, mapping the suitable resources into the process address space, locking user memory and translating virtual addresses. The control program allows the NIC to serve the registered process requests with fair politics, scheduling it among them. 

This chapter is structured as follows. Section 1.1 describes the HPC evolution from supercomputers to clusters of workstations and personal computers. Section 1.2 introduces SANs and discusses the general features of the most famous ones. Section 1.3 describes the basic principles of the communication systems for this kind of networks. Section 1.4 introduces the QNIX project. Section 1.5 introduces the problems addressed by this thesis. Section 1.6 describes the structure of the thesis.

1.1 HPC: from Supercomputers to Clusters 

The evolution of HPC has had a rich history beginning in the late 50s, when IBM started its project to produce the Stretch supercomputer [Buc62] for Los Alamos National Laboratory and Univac began to design LARC (Livermore Automatic Research Computer) [Luk59] for Lawrence Livermore National Laboratory. 

The word supercomputer in that time meant a computer achieving a few hundreds of kFLOPS peak performance, that was 100 times the performance of any available. The power of supercomputers mainly came from the introduction of some degree of parallelism in their architectures. Nevertheless the early supercomputers were not parallel machines as we mean today, rather their designers introduced hardware and software techniques, based on parallelism and concurrency concepts, that became standard features of modern computers.

For example, Stretch was the first computer to exhibit instruction level parallelism, based on both multiple functional units and pipelining, and introduced predecoding, operand prefetch, out-of-order execution, branch prediction, speculative execution, branch misprediction recovery. LARC had an independent I/O processor and was the first computer with multiprocessor support. Atlas [Flo61], by Ferranti Ltd. and University of Manchester, was the first machine to use virtual memory and concurrency, achieving CPU usage of 80% against about 8% of contemporary computers. The Control Data Corporation 6600 [Tho80], built in 1964, had a central CPU with 10 functional units working in parallel and 10 I/O peripheral processors, each with its private memory, but able to access the central memory too. The CDC 6600, with its 3 MFLOPS performance, was the fastest computer in the world for four years.

The price of these first supercomputers was order of million of dollars and only a few very specialised research centres needed such a computational power, but during the 60s integrated circuits appeared allowing quick and reliable devices at acceptable price. At the same time some techniques as multiprogramming, time sharing, virtual memory, concurrent I/O became common. On the other hand compilers for high level programming language were highly improved. General-purpose computers had a rapid diffusion in all business fields and became soon more powerful than the first supercomputers. 

1.1.1 Vector Supercomputers

Vector supercomputers were designed to allow simultaneous execution of a single instruction on all members of ordered sets of data items, such as vectors or matrices. For this aim vector functional units and vector registers were introduced in processor designs. The high performance of such machines derives from a heavily pipelined architecture with parallel vector units and several interleaved high bandwidth memory banks. These features make vector supercomputers very suitable for linear algebra operations on very large arrays of data, typical in several scientific applications, such as image processing and engineering applications. These machines contributed to bring HPC out of usual laboratories, even though the earliest of them were the STAR-100 [HT72], produced in the 1974 by Control Data Corporation for Lawrence Livermore National Laboratory and, two years later, the Cray-1 [Rus78] by Cray Research for Los Alamos National Laboratory and the Fujitsu FACOM 230 [KNNO77] for the Japanese National Aerospace Laboratory. Vector supercomputer capability of serving a large group of applications allowed the development of standard programming environments, operating systems, vectorising compilers and application packages, which fostered their industrial use. Cray-1 was a successful product with 85 installed systems from 1976 to 1982 and Cray Research continued to built vector supercomputers until the 90s, together with the Japanese manufacturers Fujitsu, NEC and Hitachi.

The early vector supercomputers were uniprocessor machines and, together with the supercomputers of the first generation, can be defined as mainstream supercomputers, since they were substantially a form of modification of existing computer architecture rather than a real new architecture. The following vector systems, instead, were symmetrical shared memory multiprocessors, even if multiple processors were generally used only to increase throughput, without changing programming paradigms. They can be classified as a particular kind of MIMD (Multiple Instruction Multiple Data) machines, known as MIMD vector machines.

1.1.2 Parallel Supercomputers: SIMD Machines

SIMD (Single Instruction Multiple Data) and MIMD machines [Fly66] constitute the two classes of the real parallel computers. The SIMD architectures are characterized by a central control unit and multiple identical processors, each with its private memory, communicating through an interconnection network. At each global clock tick the control unit sends the same instruction to all processors and each of them execute it on locally available data. Processors send results of calculation to be used as operands by other processors to their neighbours, through the interconnection network during synchronous communication steps. There were several topologies for the interconnection networks, but the most popular ones were meshes and hypercubes. Several SIMD machines have been produced since Burroughs, Texas Instruments and University of Illinois built the first one, ILLIAC-IV [BBK+68], delivered to NASA Ames in 1972. Among the most famous were CM-1 [Hil85], CM-2 [Bog89] and CM-200 [JM93] by Thinking Machine Corporation, MP-1 [Bla90] and MP-2 [EE91] by Maspar, APE100 [Bat et al.93] designed by Italian National Institute for Nuclear Physics and marketed by Quadrics Supercomputers World. Anyway only a limited class of problems fits this model, so SIMD machines, built with expensive custom processors, have had only a few specialised users. They have never been a good business for their vendors and today have almost disappeared from the market.

1.1.3 Parallel Supercomputers: MIMD Machines

The MIMD model is particularly versatile. It is characterized by a number of processors, each executing its own instruction stream on its own data asynchronously. MIMD computers can be divided in two classes, shared memory and distributed memory, depending on their memory organisation. Shared memory machines have a common memory shared by all processors and are known as multiprocessors or tightly coupled machines. Those with distributed memory, known as multicomputers or loosely coupled machines, have every processor with its private memory and an interconnection network for inter-processor communications. 

Several shared memory multiprocessors were built, the first was the D825 [AHSW62] by Burroughs, in 1962, with 4 CPUs and 16 memory modules interconnected via a crossbar switch. However the most part of the early work on languages and operating systems for such parallel machines was made in 1977 at Carnegie-Mellon University for the C.mmp [KMM+78]. Then several others appeared, differing for memory access, uniform or not uniform, and interconnection between processors and memories. This kind of supercomputers were not too hard to program, but exhibited a low degree of scalability when the number of processors increased. Moreover they were very expensive, even if built with commodity processors, as the BBN Butterfly GP-1000 [BBN88], based on Motorola 68020.  So in the second half of the 80s the distributed memory machines became the focus of interest of the HPC community.

In 1985 Intel produced the first of its distributed memory multicomputers, iPSC/1 [Intel87], with 32 80286 processors connected in a hypercube topology through Ethernet controllers, followed by iPSC/2 [Nug88], iPSC/860 [BH92] and Paragon [Intel93]. In 80s and 90s several other companies built this kind of supercomputers. Thinking Machine introduced the CM-5 [TMC92], Meiko the CS-1 [Meiko91] and CS-2 [Meiko93], IBM the SP series [BMW00], Cray the T3D [KS93] and T3E [Sco96], Fujitsu the AP1000 [Fujitsu96]. These machines had different architectures, network topologies, operating systems and programming environments, so programming codes had to be tailored on the specific machine and were no portable at all. It took considerable time before message passing became a widely accepted programming paradigm for distributed memory systems. In 1992 the Message Passing Interface Forum was formed to define a standard for such paradigm and MPI [MPIF95] was born.

The enormous and increasing (peak performance processors doubles every 18 months) improvement in processor technology led the manufactures of distributed memory multicomputers to use standard workstation processors. They were cheaper than custom-designed ones and machines based on commodity processors were easier to upgrade. In short time price/performance ratios overcame those of vector systems, while the shared memory machines evolved in today’s SMP (Symmetric MultiProcessing), shifted to the market of medium performance systems. So in 90s the supercomputer world was dominated by distributed memory machines built with commodity nodes and custom high speed interconnection networks. For example in the Cray 3TD and T3E every Alpha node had a support circuitry allowing remote memory accesses and the integration of message transactions into the memory controller. The CM-5, CS-2 and Paragon integrated the network interface, containing a communication processor, on the memory bus. 

MPI standardisation, more flexibility and excellent price/performance ratio fostered new commercial users to employ parallel systems for their applications, especially in financial and telecommunication fields. New customers were not mainly interested in Mflops, but also in system reliability, continuity of the manufacturer, fast update, standard software support, flexibility and acceptable prices. The improvement in LAN (Local Area Network) technology made possible to use clusters of workstations as a parallel computer. 

1.1.4 Clusters of Workstations and Personal Computers

Here the word cluster means a collection of interconnected stand-alone computers working together as a single, integrated computing resource, thanks to a global software environment. Communications are based on message passing, that is every node can send/receive messages to/from any other in the cluster through the interconnection network, distinguished from the network used for accessing external systems and environment services. The interconnection network is generally connected to every node through a NIC (Network Interface Card) placed on the I/O bus.

The concept of cluster computing was anticipated in the last 60s by IBM with HASP system [IBM71]. It offered a way of linking large mainframes to provide a cost effective form of commercial parallelism, allowing work distribution among nodes of a user-constructed mainframe cluster. Then in 1973 a group of researchers of Xerox Palo Alto Research Center designed the Ethernet network [BM76] and used it to interconnect at 2.94 Mbit/s the Palo workstations, the first computer systems with a graphical user interface. Anyway, about 20 years were necessary for technological improvement to give motivations and applications to HPC on clusters. Several reasons make clusters of workstations desirable over specialised parallel computers: the increasing trend of workstation performance is likely to continue for several years, the development tools for workstations are more developed than the proprietary solutions for parallel systems, the number of nodes in a cluster can be easily grown as well as node capability can be easily increased, application software is portable. Because of that several research efforts have been spent in projects investigating the development of HPC machines using only COTS (Commodity Off The Shelf) components. 

The early workstation clusters used sophisticated LAN technology, such as FDDI [Jain94] and ATM [JS95], capable of 100 Mbit/s when the Ethernet exhibited only 10 Mbit/s. One of the first and most famous experiment was the Berkeley NOW project [ACP95], started in 1994 at University of California. They connected 100 HP9000/735 through Medusa FDDI [BP93] network cards attached to graphics bus and implemented GLUnix (Global Layer Unix), an operating system layer for allowing the cluster to act as a large scale parallel machine. A few years later they connected 105 Sun Ultra 170 with the Myrinet [BCF+95] network on the Sbus. Another remarkable project was the High Performance Virtual Machine (HPVM) [BCG+97] at University of Illinois. Here a software technology was developed for enabling HPC on clusters of workstations and PC (running Linux and Windows NT) connected through Myrinet.

Moreover the rapid convergence in processor performance of workstations and PC has led to a high level of interest in utilising clusters of PC as cost effective computational resources for parallel computing. The Beowulf [BDR+95] project started in 1994 at the Goddard Space Flight Center of NASA went in this direction. The first Beowulf cluster was composed by 16 486-DX4 processors running the Linux operating system and connected by three channel bonded 10 Mbit/s Ethernet. A special device driver made channel multiplicity transparent to the application code. Today clusters of Linux PC connected trough cheap Fast Ethernet cards are a reality, known as Beowulf class clusters, and the Extreme Linux software package by Red Hat is practically a commercial distribution of the Beowulf system. Channel bonding is still used with two or three Fast Ethernet and achieves appreciable results for some applications [BBR+96]. Another interesting project about PC clusters connected through Fast Ethernet is GAMMA (Genoa Active Message MAchine) [CC97], developed at Università di Genova. However such kind of clusters are suitable for applications with limited communication requests because of inadequate performance of the Fast Ethernet network.

At present several classes of clusters are available, with different price and performance, both for academic and industrial users, ranging from clusters of SMP servers with high speed proprietary networks to self-assembled Beowulf class PC clusters using freely distributed open source Linux and tools. Supercomputer manufactures are beginning to sell clusters too. Cray has just announced the Cray Supercluster, Alpha-Linux with Myrinet interconnection, while Quadrics Supercomputers World produces the QsNet Cluster, Alpha-Linux or Alpha-True64 with the proprietary QsNet [Row99] interconnection. Moreover in the Top500 classification, until a few years ago exclusively for parallel machines, we can find now several clusters and, finally, the annual Supercomputing Conference that provides a snapshot of the state, accomplishments and directions of HPC, since 1999 has been dominating by a broad range of industrial and research speeches on production and application of clustered computer systems.

1.2 System Area Networks

Cluster performance depends on various factors, such as processors, motherboards, buses, network interfaces, network cables, communication system software. Anyway since node components improve continuously and differences among classes of processors reduce, hardware and software components of the interconnection network have become the main responsible for cluster performance. Such components are the interface between host machine and physical links (NIC), the NIC device driver, the communication system, links and switches. The NIC can be attached to the memory bus for achieving higher performance, but since every architecture has its own memory bus, such a NIC must be specific for a given host and it contrasts with the idea of commodity solution. So we will consider only NIC attached to the I/O bus. 

Performance of an interconnection network is generally measured in terms of latency and bandwidth. Latency is the time, in (s, to send a data packet from one node to another and includes the overhead for the software to prepare the packet as well as the time to transfer the bits from a node to another. Bandwidth, measured in Mbit/s, is the number of bits per second that can be transmitted over a physical link. For HPC applications to run efficiently, the network must exhibit low latency and high bandwidth, that requires suitable communication protocols and fast hardware. 
The necessity of developing a new class of networks for cluster computing has been widely recognised from the early experiments and, although LAN hardware has seen improvements of three order of magnitude in the last decade, this technology has remained not suitable for HPC. The main reason is the software overhead of the traditional communication systems, based on inefficient protocol stacks, such as TCP/IP or UDP/IP, inside the kernel of the operating system. A user process typically interfaces to the network through the socket layer built on top of  TCP or UDP, in turn on top of IP. Data to be transmitted are copied by the host processor from a user socket buffer to one or more kernel buffers for protocol layers to packetize and deliver to the data link device driver. This copies data to buffers on the NIC for transmission. On the receiver side an interrupt indicates to the host processor arriving data. These are moved from NIC buffers to kernel buffers, pass through protocol layers and then are delivered to user space. Such data copies and the interrupt on receive incur in a high software overhead that prevents the performance delivered to user applications from being proportional to hardware improvement [AMZ96]. Or rather the faster is the hardware, the higher is the inefficiency introduced by software overhead that in some cases even dominates the transmission time. The reason for such inefficiency is that these protocols had become industrial standards for Wide Area Networks, before LANs appeared. At beginning inter-process communication in a LAN environment was conceived as a sporadic event, so portability and standardisation prevailed on efficiency and these protocols became of common use also for LANs.

A possible solution for exploiting much more LAN capacity is lightening the communication system, that can be done in various manners. For example some checks can be eliminated from TCP/IP and host addressing can be simplified because they are redundant in LAN environment. This approach was followed in the PARMA project [BCM+97], but the resulting performance is not much better than using UDP/IP. The operating system kernel can be enhanced with a communication layer bypassing the traditional protocol stacks, such as GAMMA [CC97], implemented as a small set of light-weight system calls and an optimised device driver, or Net* [HR98], that allows remapping of kernel memory in user space and is based on a reliable protocol implemented at kernel level. Both achieve very good performance, but the involvement of the operating system does not allow to low software overhead enough for HPC.

Another possibility is using some tricks in designing the NIC and the device driver as indicated in [Ram93]. However the author notes that the best solution would be to have a high-speed processor on the NIC for offloading part of the communication task from the host CPU. Again all data copies in the host memory would be eliminated providing the NIC with the suitable information for transferring data from user space source to user space destination autonomously. 

Such principles go beyond the common LAN requirement, but are basic for a new class of interconnection network, known as System Area Networks (SANs), dedicated to high performance cluster computing. The necessity for SANs came from the awareness that the real solution to obtain adequate performance is to implement the communication system at user level, so that user processes can access directly the NIC, without operating system involvement. This poses a series of problems that can be resolved only with specific network devices. First experiments in such direction were done in the first 90s with ATM networks ([DDP94], [BBvEV95]), then SANs began to appear. Besides to allow the development of user level protocols, this kind of network must provide high bandwidth and low latency communication, must have a very low error rate such that they can be assumed physically secure and must be highly scalable. SANs can be very different among them in some respects, such as communication primitives, NIC interface, reliability model and performance characteristics. In the following we will describe the architectural choices of the most famous among the actually available SANs. 

1.2.1 Myrinet

Myrinet [BCF+95] by Myricom is probably the most famous SAN in the world, used in a lot of academic clusters and recently chosen by Cray for the Cray Supercluster. Myrinet drivers are available for several processors and operating systems, including Linux, Solaris, FreeBSD, Microsoft Windows.

The NIC contains a programmable processor, the custom LANai, some local RAM (until 8 MB) and four DMA engines, two between host and NIC memory and two, send and receive, between NIC memory and link interface. All data packets must be staged in the NIC memory, so the DMA engines can work in pipe in both directions.

At the moment Myrinet exhibits full duplex 2 Gbit/s links, with a bit error rate less than 10-15, and 8- or 16-port crossbar switches that can be networked for achieving highly scalable topologies. Data packets have a variable-length header with complete routing information, allowing a cut-through strategy. When a packet enters a switch, the outgoing port for the packet is selected according to the leading byte of the header before stripping off it. Network configuration is automatically detected every 10 ms, so that possible variations produce a new mapping without reboot necessity. Myrinet also provides heartbeat continuity monitoring on every link for fault tolerance. Flow control is done on each link using the concept of slack buffer. As the amount of data sent from one component (node or switch) to another, exceeds a certain threshold in the receiving buffer, a stop bit is sent to the sender to stall the transmission. As the amount of data in the buffer falls below another threshold, a go bit is sent to the sender to start the flow of bits again.

Myricom equips Myrinet with a low-latency user level communication system called GM [Myri99]. This is provided as an open source code and is composed by a device driver, an optional IP driver, a LANai control program and a user library for message passing. A lot of free software has been implemented over GM, including MPI, MPICH, VIA [BCG98] and efficient versions of TCP/IP and UDP/IP. Moreover thanks to the programmable NIC most new communication systems and protocols have been implemented and tested on Myrinet.
1.2.2 cLAN

cLAN [Gig99] by GigaNet is a connection-oriented network based on a hardware implementation of VIA [CIM97] and ATM [JS95] technologies. It supports Microsoft Windows and Linux. 

The NIC implements VIA, supports up to 1024 virtual interfaces at the same time and uses ATM Adoption Layer 5 [JS95] encapsulation for message construction. The switch is based on GigaNet custom implementation for ATM switching. Several switches can be interconnected in a modular fashion to create various topologies of varying sizes. The switch uses virtual buffer queue architecture, where ATM cells are queued on a per virtual channel per port basis. The NIC also implements a virtual buffer architecture, where cells are queued on a per virtual channel basis. The use of ATM for transport and routing of messages is transparent to the end host. VI endpoints correspond directly to a virtual channel. Flow control policies are also implemented on a per virtual channel basis.

At present cLAN exhibits full duplex 1.25 Gbit/s links, 8-, 14- and 30-port switches and support clusters with up to 128 nodes. This limitation is due to the VIA connection-oriented semantics, that requires a large amount of resources at switching elements and host interfaces.  

1.2.3 QsNet

QsNet [Row99] by Quadrics Supercomputers World is today the higher bandwidth (3.2 Gbit/s) and lower latency (2.5-5 (s) SAN in the world. At the moment it is available for Alpha processors with Linux or Compaq True64 Unix and Intel-Linux. QsNet is composed of two custom sub-systems: a NIC based on the proprietary Elan III ASIC and a high performance multi-rail data network that connects the nodes together in a fat tree topology. 

The Elan III, an evolution of the Meiko CS-2 Elan, integrates a dedicated I/O processor to offload messaging tasks from the main CPU, a 66-MHz 64-bit PCI interface, a QSW data link (a 400MHz byte-wide, full duplex link), MMU, cache and local memory interface. The Elan performs three basic types of operation: remote read and write, protocol handling and process synchronisation. The first is a direct data transfer from a user virtual address space on one processor to another user virtual address space on another processor without requiring synchronisation. About the second, the Elan has a thread processor that can generate network operations and execute code fragments to perform protocol handling without interrupting the main processor. Finally processes synchronise by events, that are words in memory. A remote store operation can set one local and one remote event, so that processes can poll or wait to test for completion of the data transfer. Events can be used also for scheduling threads or to generate interrupts on the main CPU. 

The data network is constructed from an 8-way cross-point switch component, the Elite III ASIC. Two network products are available, a standalone 16-way network and a scalable switch chassis providing up to 128 ports.

QsNet provides parallel programming support via MPI, process shared memory, and TCP/IP. It supports a true zero-copy (virtual-to-virtual memory) protocol, and has excellent performance.

1.2.4 ServerNet

ServerNet [Tan95] has been produced by Tandem (now a part of Compaq) since 1995, offering potential for both parallel processing and I/O bandwidth. It hardware implemented a reliable network transport protocol into a device capable of connecting a processor or a I/O device to a scalable interconnect fabric. Today ServerNet II [Com00] is available, offering direct support for VIA [CIM97] in hardware and drivers for Windows NT, Linux and Unix. It exhibits 12-port switches and full duplex 1.25 Gbit/s links. Each NIC has two ports, X and Y, that can be linked to create redundant connections for fault tolerance purpose. Every packet contains the destination address in the header, so that the switch can route the packet according to its routing table in a wormhole fashion. Moreover ServerNet II uses the push/pull approach that allows the burden of data movement to be absorbed by either the source or target node. At the beginning of a push (write) transaction, the source notifies the destination to allocate enough buffers to receive the message. Before sending the data, the source waits for acknowledgement from the destination that the buffers are available. To pull (read) data, the destination allocates buffers before it requests data. Then it transfers the data through the NIC without operating system involvement or application interruption.

Although ServerNet II is a well established product, it is only available from Compaq as packaged cluster solution, not as single components, which may limit its use in general-purpose clusters.

1.2.5 SCI (Scalable Coherent Interface)

SCI was the first interconnection network standard, IEEE 1596 published in 1992, to be developed specifically for cluster computing. It defines a point-to-point interface and a set of packet protocols for both shared memory and message passing programming models. The SCI protocols support shared memory by encapsulating bus requests and responses into SCI request and response packets. Moreover a set of cache coherence protocols maintain the impression of a bus-functionality from the upper layers. Message passing is supported by a subset of SCI protocols not invoking the SCI cache coherence. Although SCI features a point-to-point architecture that makes the ring topology most natural, it is possible to use switches allowing various topologies.

The most famous SCI implementation is produced by Dolphin [Dol96] that provides drivers for Windows, Solaris, Linux and NetWare SMP. The Dolphin NIC implements in hardware the cache coherence protocols allowing for caching of remote SCI memory: whenever shared data is modified, SCI interface quickly locates all the other copies and invalidate them. Caching of remote SCI memory increases performance and allows for true, transparent shared memory programming. About message passing both a standard IP interface and a high performance light weight protocol are supported by Dolphin drivers.

The NIC has error detection and logging functions, so that software can determine where an error occurred and what type of error it was. Moreover failing nodes can be detected without causing failures in operating nodes. SCI support redundant links and switches and multiple NIC can be used in each node to achieve higher performance.

Next to cluster computing, SCI is also used to implement I/O networks or transparently extend I/O buses like PCI: I/O address space from one bus is mapped into another one providing an arbitrary number of devices. Examples for this usage are the SGI/Cray GigaRing and Siemens external I/O expansion for the RM600 enterprise servers.

1.2.6 Memory Channel

Memory Channel [Gil96] is a dedicated cluster interconnection network produced by Digital (now Compaq) since 1996. It supports virtual shared memory, so that applications can make use of a cluster-wide address space. Two nodes that want to communicate must share part of their address space, one as outgoing and the other as incoming. This is done with a memory mapping through manipulation of the page tables. Each node that maps a page as incoming causes the allocation of a no swappable page of physical memory, available to be shared by the cluster. No memory is allocated for pages mapped as outgoing, simply the page table entry is assigned to the NIC and the destination node is defined. After mapping shared memory accesses are simple load and store instructions, as for any other portion of virtual memory, without any operating system or library calls. Memory Channel mappings are contained in two page control tables on the NIC, sender and receiver, respectively. 

The Memory Channel hardware provides real-time precise error handling, strict packet ordering, acknowledgement, shared memory lock support and node failure detection and isolation. The network is equipped with the TrueCluster software for cluster management. This software is responsible for recovering the network from a faulty state to its normal state, reconfiguring the network when a node is added or removed, providing shared memory lock primitive and application interface.

Another important feature of this network is that an I/O device on the PCI bus can transmit directly to the NIC, so that the data transfer does not affect the host system memory bus.

At the moment Memory Channel is available only for Alpha servers and True64 Unix. It can support 8 SMP nodes, each with up to 12 processors. Nodes are connected by means of a hub, that is a full-duplex crossbar with broadcast capabilities. Links are full-duplex with bandwidth greater than 800 Mbit/s.

1.2.7 ATOLL

The Atoll [BKR+99], Atomic Low Latency network, is one of the newest projects about cluster networks. At the moment it is a research project at University of Mannheim. Atoll has four independent network interfaces, an 8x8 crossbar switch and four link interfaces in a single chip, so that any additional switching hardware is eliminated. It will support both DMA and Programmed I/O transfers, according to message length.

Message latency is expected very low, and bandwidth between two nodes approaches 1.6 Gbit/s. Atoll will be available for Linux and Solaris and support MPI over its own low-latency protocol. The prototype was announced for the first half of 2001, but it is not available yet.

1.3 Communication Systems for SANs

As we saw in the previous section, SANs was introduced mainly to support user-level communication systems, so that the operating system involvement in the communication task can be reduced as much as possible. Such communication systems can be substantially divided in two software layers. At the bottom, above the network hardware, there are the network interface protocols, that control the network device and implement a low level communication abstraction that is used by the higher layers. The second layer is present in most communication systems, but not all, and consists of a communication library that implements message abstractions and higher level communication primitives. 

User-level communication systems can be very different among them, according to several design choices and specific SAN architectures. Various factors influence the performance and semantics of a communication system, mainly the lowest layer implementation. In [BBR98] six issues on the network interface protocols are indicated as basic for the communication system designers: data transfer, address translation, protection, control transfer, reliability and multicast.

The data transfer mechanism significantly affects latency and throughput. Generally a SAN is provided with a DMA engine for moving data from host memory to NIC and vice versa, but in many cases programmed I/O is allowed too. DMA engines can transfer entire packets in large bursts and proceed in parallel with host computation, but they have a high start-up cost. With programmed I/O, instead, the host processor must write and read data to and from the I/O bus, but it can do it typically one or two words at a time resulting in a lot of bus transactions. Choosing the suitable type of data transfer depends on the host CPU, the DMA engine and the packet size. A good solution can be using programmed I/O for short messages and DMA for longer ones, where the definition of short message changes according to the host CPU and the DMA engine. This is effective for data transfers from host memory to NIC, but reads over the I/O bus are generally much slower than DMA transfers, so most protocols use only DMA in this direction. Because DMA engines work asynchronously, host memory being source or destination of a DMA transfer cannot be swapped out by the operating system. Some communication systems use reserved and pinned areas for DMA transfers, others allow user processes to pin a limited number of memory pages in their address space. The first solution imposes a memory copy into a reserved area, the second requires a system call utilization.

The address translation is necessary because DMA engines must know the physical addresses of the memory pages they access. If the protocol uses reserved memory areas for DMA transfers, each time a user process opens the network device, the operating system allocates one of such areas as a contiguous chunk of physical memory and passes its physical address and size to the network interface. Then the process can specify send and receive buffers using offsets that the NIC adds to the starting address of the respective DMA area. The drawback of this solution is that the user process must copy its data in the DMA area increasing the software overhead. If the protocol does not make use of DMA areas, user processes must dynamically pin and unpin the memory pages containing send and receive buffers and the operating system must translate their virtual addresses. Some protocols provide a kernel module for this purpose, so that user processes, after pinning, can obtain physical addresses of their buffers and pass them to the NIC. Other protocols, instead, keep a software cache with a number of address translations referred to pinned pages on the NIC. If the translation of a user virtual address is present in the cache, the NIC can use it for the DMA transfer, otherwise the NIC must interact with the operating system to handle the cache miss.

The protection is a specific problem of user-level communication systems, because they allow user processes a direct access to the network device, so one process could corrupt data of another process. A simple solution is to use the virtual memory system to map a different part of the NIC memory into the user address space, but generally the NIC memory is too small for all processes to be accommodated. So some protocols uses part of the NIC memory as a software cache for the data structures of a number of processes and store the remaining in the host memory. The drawback is a heavy swap of process data structures over the I/O bus.

As we saw in the previous section, interrupt on message arrival is too expensive for high speed networks, so in user-level communication systems generally the host polls a flag set by the NIC when a message is received from the network. Such flag must be in host memory for avoiding I/O bus transactions and because it is polled frequently, it usually is cached, so that no memory traffic is generated. Anyway polling is time consuming for the host CPU and finding the right polling frequency is difficult. Several communication systems support both interrupt and polling, allowing the sender or the receiver to enable or disable interrupts. A good solution could be the polling watchdog, a mechanism that starts a timer on the NIC when a message is received and let the NIC generate an interrupt to the host CPU if no polling is issued before the timer expires.

An important choice for a communication system is to assume the network is reliable or unreliable. Because of the low error rate of SANs, most protocols assume hardware reliability, so no retransmission or time out mechanism is implemented. However the software communication system could drop packets when a buffer overflow happens on the NIC or on the host. Some protocols handle the recovery from overflow, for example, let the receiver return an acknowledgment if it has room for the packet and a negative acknowledgment if it has not. A negative acknowledgment causes the sender retransmit the dropped packet. The main drawback of this solution is the increased network load due to acknowledgment packets and retransmission. Other protocols prevent buffer overflow with some flow control scheme that blocks the sender if the receiver is running out of buffer space. Sometimes for long messages is used a rendezvous protocol, so that the message is not sent until the receiver posts the respective receive operation. 

At the moment SANs does not support multicast in hardware, so another important feature of communication systems is the multicast handling. The trivial solution that sends the message to all its destinations as a sequence of point-to-point send operations is very inefficient. A first optimization can be to pass to the NIC all multicast destinations and let the NIC repeatedly transmits the same message to each of them. Better solutions are based on spanning tree protocols allowing multicast packets to be transmitted in parallel, forwarded by hosts or NICs.

1.4 The QNIX Project

QNIX (Quadrics Network Interface for LinuX) [DLP01] is a research project of the R&D department of Quadrics Supercomputers World at Rome. Its goal is the realisation of a new SAN with innovative features for achieving higher bandwidth, lower latency and wide flexibility. 

QNIX is a standard PCI card, working with 32/64-bit 33/66-MHz buses. The figure 1 shows the main blocks of its hardware architecture, that are the Network Engine, the four interconnection links, the CPU block and the SDRAM Memory. 

Inside the Network Engine block, we have the Router containing an integrated Cross-Switch for toroidal 2D topologies, so that all the interconnection network is contained on the board. This feature, at best of our knowledge present only in the Atoll Project [BKR+99], makes QNIX also suitable for embedded systems that are an increasing presence in the market. The Router drives the Cross-Switch according to the hardware implemented VCTHB (Virtual Cut Through Hole Based) routing algorithm [CP97]. This is an adaptive and deadlock-free strategy that allows a good load balancing on the network. The four links are full duplex bi-directional 2.5 Gb/s serial links on dual coaxial cables.

The CPU block contains a RISC processor, two NIC programmable DMA engines and an ECC (Error Correction Code) unit. The processor executes a NIC control program for network resource management and is user programmable. This makes easy to experiment with communication systems such as VIA [CIM97], PM [HIST98], Active Messages [CM96] or new models. In this aspect QNIX is similar to Myrinet, but, unlike Myrinet that uses the custom LANai processor, it uses a commodity Intel 80303, so that it is easier and cheaper to upgrade it. The two DMA engine can directly transfer data between host memory and NIC FIFOs, so that there is no copy necessity from host memory to NIC memory. The ECC unit guarantees data integrity appending/removing a control byte to/from each flit (8 bytes). This is done on the fly during DMA transfers in a transparent mode and without time cost addition. The correction code used is able to adjust single-bit and detect double-bit errors. 

The SDRAM memory can be up to 256 MB wide. This allows to hold all data structures associated with the communication task in the NIC local RAM, avoiding heavy swap operation between host and NIC memory. So the QNIX NIC can efficiently support communication systems that move the most part of the communication task on the NIC. Such kind of communication systems are specially suitable for HPC clusters because they allow the host processor to be unloaded as much as possible from the communication task, so that a wide overlap between computation and communication is made possible. 
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Current QNIX design is based on FPGA technology, allowing reduced development cost, fast upgrade and wide flexibility. Indeed it is easy to reconfigure the routing strategy or to change the network topology.  Moreover the network can be tailored on particular customer demands with low cost and minimal effort and can be easily adapted for direct communication with I/O devices. This can be very useful, for example, for server applications that could transfer large data amount directly from a disk to the network without host CPU intervention.  

1.5 Thesis Contribution

In this thesis we describe the communication system developed for the QNIX interconnection network [DLP01] under the Linux operating system, kernel version 2.4. It is a user-level message passing system, mainly designed for giving effective support to parallel applications in cluster environment. This is not meaning that the QNIX communication system cannot be used in other situations, but only that it is optimised for parallel programming. Here we refer to message passing programming paradigm and in particular to its de facto standard that is MPI. So the QNIX communication system is designed with the main goal of supporting an efficient MPI implementation, that is a basic issue for achieving high performance parallel programs. Indeed often a good parallel code is performance penalised because of a bad support. This can happen substantially for three reasons: not suitable communication system, bad MPI implementation, inconvenient interface between communication system and higher layers. The MPI implementation is not in the purpose of this thesis, so here we concentrate on the other two issues. 

For a communication system to be suitable for HPC cluster computing, it is absolutely necessary to reduce software overhead and host CPU involvement in the communication task, so that a wide overlapping between computation and communication is made possible. For this reason we designed the QNIX communication system as user-level and we moved the most part of the communication task on the NIC processor. Another important issue is the short message management. Indeed often SAN communication systems use only DMA transfers. This achieves good performance for long messages, but is not suitable for the short ones because the high DMA start-up cost is not amortised. Our communication system allows to use programmed I/O for short messages and DMA transfers in other cases. The threshold for define a message as short depends on various factors, such as the PCI bus implementation of the host platform and the DMA engine of the NIC, so that we suggest to choose a value based on experimental results.
About the interface that our communication system provides to high layers, we paid attention to avoid mismatches between QNIX API and MPI semantics. Indeed some communication systems, even though exhibit high performance, are of no use to application programmers because the data transfer method and/or the control transfer method they implement do not match the needs of MPI implementation.   

The QNIX communication system described here consists of three parts: a user library, a driver and a control program running on the NIC processor. 

The user library contains two class of functions. One allows user processes to request a few operating system services to the device driver, while the other provides user processes the capacity of interfacing directly with the network device without further operating system involvement.
Since the QNIX communication system is classified as user-level, the driver takes only on preliminary actions for the communication to take place, while all the remainder task is left to user processes. There are substantially two intervention points for the operating system. The first is the registration of the user processes that will need network services to the network device, to be done only once when the process starts its running. The second is the locking of process memory buffers to be transferred and relative virtual address translation for DMA utilisation. These action can be done just once on a preallocated buffer pool or on the fly according to process requirements.  

The control program running on the NIC processor executes the most part of the communication task. It is responsible for scheduling the network device among requiring processes according to a double level round robin politics, retrieving data to be sent directly from user process memory, delivering arriving data to the right destination process directly in its receive buffer, handling flow control by means of buffering in NIC local memory.

1.6 Thesis Organisation

This thesis is structured as follows. Chapter 2 provides an overview of research activities about user-level communication systems. We describe some of the most significant user-level communication systems developed in the last years, discussing and evaluating their design choices. Chapter 3 is the focal point of this thesis. It gives a detailed description of the QNIX communication system, discusses related design choices and illustrates work in progress and future extensions. In Chapter 4 we show the first experimental results, achieved by a preliminary implementation of the QNIX communication system.
Chapter 2

User-level Communication Systems

SANs exhibit great potential for HPC because of their physical features, that are high bandwidth, low latency and high reliability, but the real reason making them so useful is the user-level communication system support. Indeed, as we saw in the previous chapter, if all network access is through the operating system, a large overhead is added to both the transmission and the receive path. In this case only a low percentage of the interconnection network performance is delivered to user applications, so that it would make no distinction to have a SAN or another kind of network. User-level communication systems, instead, allow to exploit much more hardware capabilities and for this reason have been widely investigated.

In the last years several research efforts have been spent for user-level communication system development and the major industrial companies have been interested in this argument. As a consequence the present scenario is very variegated and continuously in evolution. Most user-level communication systems have been implemented on the Myrinet network because of Myricom open source politics and user programmability of the LANai processor, and several comparative studies are available in literature, such as [BBR98] and [ABD+98]. Anyway it is difficult to decide which is the best because they support different communication paradigms, employ a variety of different implementation tradeoffs and exhibit specific architectural choices. Depending on some conditions, one can achieve better performance than another, so that it is not very significant to compare numbers. Rather it can be useful to try a classification of some of the most famous user-level communication systems, based on some important design issues. We choose the six issues emphasized in [BBR98]: data transfer between host and NIC (DMA or programmed I/O), address translation, protection in multi-user environment, control transfer (interrupt or polling), reliability and multicast support. The following table gives such a classification for 10 among the most significant user-level communication systems.

	System
	Data Transfer

(host-NIC)
	Address

Translation
	Protection
	Control

Transfer
	Reliability
	Multicast

Support

	AM II
	PIO & DMA
	DMA areas
	Yes
	Polling +

Interrupt
	Reliable

NIC ACK protocol with retransmission
	No

	FM 2.x
	PIO
	DMA area 

(recv)
	Yes
	Polling
	Reliable

Host credits
	No

	FM/MC
	PIO
	DMA area

(recv)
	No
	Polling + Interrupt
	Reliable

Ucast: host credits

Mcast: NIC credits
	Yes

(on NIC)

	PM
	DMA
	Software TLB (NIC)
	Yes
	Polling
	Reliable

ACK/NACK

NIC protocol
	Multiple Sends

	VMMC
	DMA
	Software TLB (NIC)
	Yes
	Polling + Interrupt
	Reliable
	No

	VMMC-2
	DMA
	UTLB in kernel, NIC cache
	Yes
	Polling + Interrupt
	Reliable
	No

	LFC
	PIO
	User translation
	No
	Polling

Watchdog
	Reliable

Ucast: host credits

Mcast: NIC credits
	Yes

(on NIC)

	Hamlyn
	PIO & DMA
	DMA areas
	Yes
	Polling + Interrupt
	Reliable
	No

	BIP
	PIO & DMA
	User translation
	No (single user)
	Polling
	Reliable

Rendezvous
	No

	U-Net
	DMA
	Software TLB (NIC)
	Yes
	Polling + Interrupt
	Unreliable
	No


The research efforts about user-level communication systems achieved their best acknowledgment in 1997, when Compaq, Intel and Microsoft defined the VIA specification [CIM97] as the first attempt for a common standard. At the moment VIA is hardware supported in some SANs, such as cLAN [Gig99] and ServerNet II [Com00], and various software implementations have been realised both as research experiments and industrial products. Anyway in the rapid evolution of this field VIA, even being an important step, is substantially one among the others. Currently its promoters and a lot of other companies are working for the definition of Infiniband [Inf01], a new, broader spectrum communication standard attempt.

In this chapter we try to give an overview of the user-level communication system world. For this purpose we choose to describe in details the VIA specification and the four research systems that mainly contributed to its definition: Active Messages, Illinois Fast Messages, U-Net and VMMC. The chapter is structured as follows. Active Messages is illustrated in Section 2.1, Illinois Fast Messages in Section 2.2, U-Net in Section 2.3, VMMC in Section 2.4 and the VIA specification in Section 2.5.
1 Active Messages 
Active Messages is a research project started in the first 90s at Berkeley, University of California. Originally its goal was the realisation of a communication system for improving performance on distributed memory parallel machines. Such system is not intended for direct use by application developers, but rather as a layer for building higher level communication libraries and supporting communication code generation from parallel language compilers. Since the context is that of the parallel machines, the following assumptions hold: the network is reliable and flow control is implemented in hardware; the network interface supports user-level access and offers some protection mechanism; the operating system coordinates process scheduling among all nodes, so that communicating processes execute simultaneously on their respective nodes; communication is allowed only among processes belonging to the same parallel program.

Active Messages [CEGS92] is an asynchronous communication system. It is often defined as one-sided because whenever a process sends a message to another, the communication occurs regardless the current activity of the receiver process. The basic idea is that the message header contains the address of a user-level function, a message handler, which is executed on message arrival. The role of this handler, that must execute quickly and to completion, is to extract the message from the network and integrate it into the data structures of the ongoing computation of the receiver process or, for remote service requests, immediately reply to the requester. In order that the sender can specify the address of the handler, the code image must be uniform on all nodes and this is easily fulfilled only with the SPMD (Single Program Multiple Data) programming model. 

At first Active Messages was implemented on CM-5 and nCUBE/2 for supporting the Split-C compiler. Split-C was a shared-memory extension to the C programming language providing substantially two split-phase remote memory operations, PUT and GET. The first copies local data into a remote process memory, the second retrieves data from a remote process memory. Both operations are asynchronous non-blocking and increment a flag on the processor that receives data for process synchronisation. Calling the PUT function causes the Active Messages layer sends a PUT message to the node containing the destination memory address. The message header contains destination node, remote memory address, data length, completion flag address and PUT handler address. The payload contains data to be transferred on the destination node. The PUT handler reads address and length, copies data and increments the completion flag. Calling the GET function causes the Active Messages layer sends a GET message to the node containing the source memory address. This message is a request and contains no payload. The header contains request destination node, remote memory address, data length, completion flag address, requesting node, local memory address and GET handler. The GET handler sends a PUT message to the requesting node using the GET header information.

Successively Active Messages was also implemented on Intel Paragon, IBM SP-2 and Meiko CS-2. In all cases it achieved performance improvement (factor between 6 and 12) over vendor supplied send/receive libraries. The main reason is the buffering elimination, obtained because the sender blocks until the message can be injected into the network and the handler executes immediately on message arrival, interrupting the current computation. However buffering is required in some cases, for example, on sending side for large messages and on receiving side if storage for arriving data have not been allocated yet. 

1 Active Messages on Clusters

In 1994 the Berkeley NOW project [ACP95] started and Active Messages was implemented on a cluster built with 4 HP 9000/735 workstations interconnected by Medusa FDDI [BP93] cards. This implementation, known as HPAM [Mar94], enforces a request-reply communication model, so that any message handler is typed as request or reply handler. To avoid deadlock request handlers may only use the network for issuing a reply to the sender and reply handlers cannot use the network at all. HPAM supports only communication among processes composing a parallel program and provides protection between different programs. For this purpose it assigns a unique key to every parallel program to be used as a stamp for all messages from processes of a given program. The Medusa card is completely mapped in every process address space, so that the running process has direct access to the network. A scheduling daemon, external to HPAM, ensures that only one process (active process) may use the Medusa at a time. The scheduling daemon stops all other processes that need the network and swaps the network state when switching the active process. It is not guaranteed that all arriving messages are for the active process, so for every process the HPAM layer has two queues, input and output, to communicate with the scheduler. When a message arrives HPAM checks its key and if it does not match with that of the active process, the message is copied into the output queue. When the daemon suspends the active process, it copies all messages in the output queue of the suspended process into the input queues of the correct destination processes. Every time a process becomes the active process, it checks its input queue before checking the network for incoming messages.

From a process point of view the Medusa card is a set of communication buffers. About sending there are 4 request and 4 reply buffers for every communication partner. A descriptor table contains information about buffer state. Receive buffers form a pool and do not have descriptor table entries. For flow control purposes such pool contains 24 buffers. Indeed every process can communicate with 3 processes. In the worst case all processes make 4 requests to the same process, consuming 12 receive buffers. That process in turn may have 4 outstanding requests for every partner, so that other 12 buffers are needed for replies. Unfortunately this approach does not scale increasing the number of cluster nodes because of the limited amount of Medusa VRAM.

When a process A sends a request to the process B, HPAM searches for a free request buffer for B and writes the message in it. Then it put the pointer to this buffer into the Medusa TX_READY_FIFO, marks the buffer as not free and set a timer. As soon as the request is received in a B receive buffer, HPAM invokes the request handler and frees the receive buffer. The handler stores the corresponding reply message in a reply buffer for A and put the buffer pointer in the TX_READY_FIFO. When the reply arrives in a A receive buffer, the reply handler is invoked and, after it returns, the request buffer is freed. If the requestor times-out before the reply is received, HPAM sends a new request. Compared to two TCP implementations on the Medusa hardware, HPAM achieves an order of magnitude performance improvement.

Another Active Messages implementation on cluster, SSAM [ABBvE94], was developed at Cornell University, with Sun workstations and Fore Systems SBA-100 ATM network. SSAM is based on the same request-reply model as HPAM, but it is implemented as a kernel-level communication system, so that the operating system is involved for every message exchange. Since it is no allowed to user processes direct access to the ATM network, communication buffers are in the host memory. The kernel pre-allocates all buffers for a process when the device is opened, pins down and maps them in the process address space. SSAM choices a buffer for the next message and puts its pointer in an exported variable. When the process wants to send a message, write it into this buffer and SSAM traps to the kernel. The trap passes the message offset within the buffer area in a kernel register and the kernel copies the message into the ATM output FIFO. At the receiving side the network is polled. Polling is automatically executed after every send operation, but can be enforced by an explicit poll function. In both cases it generates a trap to the kernel. The trap moves all messages from the ATM input FIFO into a kernel buffer and the kernel copies each one into the appropriate process buffer. After the trap returns, SSAM loops through the received messages and calls the appropriate handlers. Even if SSAM is lighter than TCP, it does not achieve particularly brilliant performance because of the heavy operating system involvement.

1 Active Messages II

The first implementations of Active Messages on clusters restricted communication only to processes belonging to the same parallel program, so they did not support multi-threaded and client/server applications, were not fault-tolerant and allowed each process to have a unique network port, numbered with its rank. For overcoming these drawbacks Active Messages was generalised and became Active Messages II [CM96], tailored on high performance networks. Experiments with Active Messages II have been done on a cluster composed of 105 Sun UltraSPARC interconnected by the Myrinet network, at that time mounting the LANai 4 processor [CCM98]. Today also SMP clusters are supported [CLM97] and all the software is available as open source, continuously updated by the Berkeley staff. 

Active Messages II allows applications to communicate via endpoints, that are virtualised network interfaces. Each process can create multiple endpoints and any two endpoints can communicate, even if one belongs to a user process and another to a kernel process or one belongs to a sequential process and another to a parallel process. When a process creates an endpoint, marks it with a tag and only endpoint with the same tag can send messages to the new endpoint. There are two special values for a tag: never-match, that never matches any tag, and wild card, that matches every tag. A process can change an endpoint tag at any time. 

Every endpoint is identified by a globally unique name, such as the triple (IP address, UNIX id, Endpoint Number), assigned by some name server externally to the Active Messages layer. For Active Messages to be independent from the name server, every endpoint has a translation table that associates indices with the names of remote endpoints and their tags. Information for setting this table is obtained by an external agent when the endpoint is created, but applications can dynamically add and remove translation table entries. Other than the translation table, each endpoint contains a send pool, a receive pool, a handler table and a virtual memory segment. Send and receive pools are not exposed to processes and are used by the Active Messages layer as buffers for respectively outgoing and incoming messages. The handler table associates indices to message handler functions, removing the requirement that senders must know addresses of handlers in other processes. The virtual memory segment is a pointer to an application-specified buffer for receiving bulk transfers.

The Active Messages II implementation on the NOW cluster [CCM98] is composed of an API library, a device driver and a firmware running on the Myrinet card. To create an endpoint, a process calls an API function, that in turn calls the driver to have a virtual memory segment mapped in the process address space for the endpoint. Send and receive pools are implemented as four queues, request send, reply send, request receive, reply receive. Endpoints are accessed both by processes and network interface firmware, so, for good performance, they must be allocated on the NIC memory. Since this resource is rather limited, it is used as a cache. The driver is responsible of paging endpoints on and off the NIC and handling faults when a non-resident endpoint is accessed.

Active Messages II supports three message types: short, medium and bulk. Short messages contain payload until 8 words and are transferred directly into resident endpoint memory using programmed I/O. Medium and bulk messages use programmed I/O for message header and DMA for payload. Medium messages are sent and received in per-endpoint staging areas, that are buffers in the kernel heap, mapped into process address space. Sending a medium messages requires a copy in this area, but upon receiving the message handler is passed a pointer to the area, so that it can operate directly on data. Bulk messages are built using medium ones and always pass for the staging area because they must be received in the endpoint virtual memory segment. Because the Myrinet card can only DMA transfer data between the network and its local memory, a store-and-forward delay is introduced for moving data between host and interface memory. The NIC firmware is responsible for sending pending messages from resident endpoints. It chooses which endpoint to service and how long to service it according to a weighted round robin policy. 

In Active Messages II all messages that cannot be delivered to their destination endpoints are returned to the sender. When the NIC firmware sends a message, it sets a timer and saves a pointer to the message for potential retransmission. If the timer expires before an acknowledgement is received from the destination NIC firmware, the message is retransmitted. After 255 retries the destination endpoint is deemed unreachable and the message is returned to the sender application.

Server applications require event driven communication which allows them to sleep until messages arrive, while polling is more efficient for parallel applications. Active Messages II supports both modes. 

The Active Messages II performance measured on the NOW cluster is very good [CM99]. It achieved 43.9 MB/s bandwidth for 8 KB messages, that is about 93% of the 46.8 MB/s hardware limit for 8 KB DMA transfers on the Sbus. The one-way latency for short messages, defined as the time spent between posting the send operation and message delivery to destination endpoint, is about 15 (s.

1 Illinois Fast Messages

Fast Messages is a communication system developed at University of Illinois. It is very similar to Active Messages and, as Active Messages, was originally implemented on distributed memory parallel machines, in particular the Cray T3D. Short after it was brought on a cluster of SPARCStations interconnected by the Myrinet network [CLP95]. In both cases the design goal was to deliver a large fraction of the raw network hardware performance to user applications, paying particular attention to small messages because these are very common in communication patterns of several parallel applications. Fast Messages is targeted to compiler and communication library developers, but application programmers can also use it directly. For Fast Messages to match requirements from both these kinds of users, it provides a few basic services and a simple programming interface. 

The programming interface consists only of three functions, one for sending short messages (4-word payload), one for sending messages with more than 4-word payload and one for receiving messages. As with Active Messages, every message brings in its header a pointer to a sender-specified handler function that consumes data on the receiving processor, but there is no request-reply mechanism. It is programmer responsibility to prevent deadlock situations. Fast Messages provides buffering so that senders can continue their computation while their corresponding receivers are not servicing the network. On the receiving side, unlike Active Messages, incoming data are buffered until the destination process call the FM_extract function. This checks for new messages and, if any, executes corresponding handlers. Such function must be called frequently to ensure the prompt processing of incoming data, but it needs not be called for the network to make progress. 

Fast Messages design assumes that the network interface has an on board processor with its own local memory, so that the communication workload can be divided between host and network coprocessor. Such assumption allows Fast Messages to expose efficiently two main services to higher level communication layers, control over scheduling of communication work and reliable in-order message delivery. The first, as we saw above, allows applications to decide when communication is to be processed without blocking the network activity. What makes this very efficient is that the host processor is not involved in removing incoming data from the network, thanks to the NIC processor. Reliable in-order message delivery prevents the cost of source buffering, timeout, retry and reordering in higher level communication layers, requiring Fast Messages only to resolve issues of flow control and buffer management, because of the high reliability and deterministic routing of the Myrinet network.

1 Fast Messages 1.x

With Fast Messages 1.x we mean the two versions of the implementation of a single-user Fast Messages on a Myrinet cluster of SPARCStations [CLP95], [CKP97]. Since there is no substantial differences between the two implementations, here we will give a unique discussion for both.

Fast Messages 1.x is a single-user communication system consisting of a host program and a LANai control program. These coordinate through the LANai memory that is mapped into the host address space and contains two queues, send and receive. The LANai control program is very simple because of the LANai slowness respect to the host processor (factor about 20).  It repeats continuously two main actions: checking the send queue for data to be transferred and, if any, injecting them via DMA into the network, checking the network for incoming data and, if any, transferring them via DMA into the receive queue. 

The Sbus is used in asymmetric way, with the host processor moving data into the LANai send queue and exploiting DMA to move data from the LANai receive queue into a larger host receive queue. Programmed I/O reduces particularly send latency for small messages and eliminates the cost of copying data into a pinned DMA-able buffer accessible from the LANai processor. DMA transfers for incoming messages, initiated by LANai, maximize receive bandwidth and prompt drain the network, because they are executed as soon as the Sbus is available, even if the host is busy. Data in the LANai receive queue are not interpreted, so they can be aggregated and transferred into the pinned host receive queue with a single DMA operation. A FM_extract execution causes pending messages from the host receive queue to be delivered to application. 

Fast Messages 1.x implements an end-to-end window flow control schema, such that buffer overflow is prevented. Each sender has a number of credits for each receiving node. The number of credits is a fraction of the host receive queue size of the receiving node. If a process runs out its credit with a destination, it cannot send further messages to that destination. Whenever receivers consume messages, corresponding credits are sent back to the appropriate senders.

The Myrinet cards used at Illinois for Fast Messages 1.x implementation mounted LANai 3.2 with 128 KB local memory. Moreover it exhibited physical link bandwidth of 80 MB/s, but the Sbus limited to 54 MB/s for DMA transfers and 23.9 MB/s for programmed I/O writes. Fast Messages 1.x achieved about 17.5 MB/s asymptotic bandwidth and 13.1 (s one-way latency for 128-byte packets. It reached half of asymptotic bandwidth for very small messages (54 bytes). This result is not excellent, but for short messages is an order of magnitude better than the Myrinet API version 2.0, that, however, for message sizes ( 4 KB, achieved 48 MB/s bandwidth.

1 Fast Messages 2.x

An implementation of MPI on top of Fast Messages 1.x showed that Fast Messages 1.x was lacking flexibility in data presentation across layer boundaries. This caused a number of memory copies in MPI introducing a lot of overhead. Fast Messages 2.x [CLP98] address such drawbacks, retaining the basic services of the 1.x version. 

Fast Messages 2.x introduces the stream abstraction, in which messages become byte streams instead of single contiguous memory regions. This concept makes the Fast Messages API change and allows to support gather/scatter. The functions for sending messages are replaced by functions for sending chunks of the same message of arbitrary size and functions marking message boundaries are introduced. On the receive side message handlers can call a receive function for every chunk of the corresponding messages. Because each message is a stream of bytes, the size of each piece received need not equal the size of each piece sent, as long as the total message size match. Thus, higher level receives can examine a message header and, based on its contents, scatter the message data to appropriate locations. This was not possible with Fast Messages 1.x because it handled the entire message and could not know destination buffer address until the header was decoded. Fast Messages 1.x transferred an incoming message in a staging buffer, read the message header and, based on its contents, delivered data to a pre-posted higher level buffer. This introduced an additional memory copy in the implementation of communication layers on top of Fast Messages 1.x.

In addition to gather/scatter, the stream abstraction also provides the ability to pipeline messages, so that message processing can begin at the receiver even before the sender has finished. This increases the throughput of messaging layers built on top of Fast Messages 2.x. Moreover the execution of several handlers can be pending at given time because packets belonging to different messages can be received interleaved. Practically Fast Messages 2.x provides a logical thread, executing the message handler, for every message. When a handler calls a receive function for not yet arrived data, the corresponding thread is de-scheduled. On the extraction of a new packet from the network, Fast Messages 2.x schedules the associated pending handler. The main advantage of this multithreading approach is that a long message from one sender does not block other senders. 

Since FM_extract in Fast Messages 1.x processed the entire receive queue, higher communication layers, such as Sockets or MPI, were forced to buffer not yet requested data. This problem is resolved in Fast Messages 2.x adding an argument specifying the amount of data to be extracted to the FM_extract function. This enable a flow control from the receiver process and avoids further memory copies. 

Fast Messages 2.x was originally implemented on a cluster of 200 MHz Pentium Pro machines running Windows NT and interconnected by the Myrinet network. Myrinet cards used for this new version of Fast Messages mounted the LANai 4.1 and exhibited raw link bandwidth of 160 MB/s. Experimental results with Fast Messages 2.x achieved 77 MB/s asymptotic bandwidth and 11 (s one-way latency for small packets. Asymptotic bandwidth is reached for message sizes < 256 bytes. The MPI implementation on top of Fast Messages 2.x, MPI-FM, achieved about 90% of FM performance, that is 70 MB/s asymptotic bandwidth and 17 (s one-way latency for small packets. This result takes advantage from the write-combining support provided by the PCI bus implementation on Pentium platforms.

Last improvement to Fast Messages 2.x is multiprocess and multiprocessor threading support [BCKP99]. This allows to use Fast Messages 2.x effectively in SMP clusters and removes the single-user constraint. In this new version the Fast Messages system keeps a communication context for each process on a host that must access the network device. When a context first gains access to the network, its program identifier (assigned from a global resource manager) and the instance number of that identifier are placed into LANai memory. These are used by the LANai control program for identifying message receivers. For every context Fast Messages 2.x has a host pinned memory region to be used as host receive queue for that context. Such region is a part of a host memory region, pinned by the Fast Messages device driver when the device is loaded. The size of this region depends on the maximum number of hosts in the cluster, the size of Fast Messages packets (2080 bytes, including header) and the number of communication contexts.

For processes running on the same cluster node, Fast Messages 2.x supports a shared memory transport layer, so that they do not cross the PCI bus for intra-node communication. Every process is connected to the Myrinet for inter-node communication and to a shared memory region for intra-node communication. Since Fast Messages design requires a global resource manager to map process identifiers to physical nodes, each process can look up in global resource manager data structures to decide which transport to use for peer communication. The shared memory transport uses the shared memory IPC mechanism provided by the host operating system. 

This version of Fast Messages 2.x was implemented on the HPVM (High Performance Virtual Machine) cluster, a 256-node Windows NT cluster, interconnected by Myrinet. Each node has two 450 MHz Pentium II processors. Performance achieved are 8.8 (s one-way latency for zero-payload packets and more than 100 MB/s asymptotic bandwidth. 

1 U-Net

U-Net is a research project started in 1994 at Cornell University, with the goal of defining and implementing an user-level communication system for commodity clusters of workstations. The first experiment was done on 8 SPARCStations running the SunOS operating system and interconnected by the Fore Systems SBA-200 ATM network [BBvEV95]. Successively the U-Net architecture was implemented on a 133 MHz Pentium cluster running Linux and using Fast Ethernet DC21140 network interfaces [BvEW96].

The U-Net architecture virtualises the network interface, so that every application can think of having its own network device. Before a process can access the network, it must create one or more endpoints. An endpoint is composed of a buffer area to hold message data and three message queues, send, receive and free, to hold descriptors for messages that are to be sent or have been received. The buffer area is pinned to physical memory for DMA use and descriptors contain, among other things, offsets within the buffer area for referring to specific data buffers. The free queue is for pointers to free buffers to be used for incoming data. User processes are responsible for inserting descriptors in the free queue, but they cannot control the order in which these buffers are filled. Two endpoints communicate through a communication channel, distinguished by an identifier that the operating system assigns at channel creation time. Communication channel identifiers are used to generate tags for message matching. 

To send a message, a process puts data in one or more buffers of the buffer area and inserts the related descriptor in the send queue. Small messages can be insert directly in descriptors. The U-Net layer adds the tag identifying the sending endpoint to the outgoing message. On the receiving side U-Net uses the incoming message tag to determinate the destination endpoint, moves message data in one or more free buffers pointed by descriptors of the free queue and put a descriptor in the process receive queue. Such descriptor contains the pointers to the just filled buffers. Small messages can be held directly in descriptors. The destination process is allowed to periodically check the receive queue status, to block waiting next message arrival, or to register a signal handler with U-Net to be invoked when the receive queue becomes non-empty.

2.3.1 U-Net/ATM

The ATM implementation of U-Net [BBvEV95] exploits the Intel i960 processor and the 256 KB local memory on the SBA-200 card. The i960 maintains a data structure holding information about all process endpoints. Buffer areas and receive queues are mapped into the i960 DMA space and in user process address space, so processes can poll for incoming messages without accessing the I/O bus. Send and receive queues are allocated in SBA-200 memory and mapped in user process address space. To create endpoints and communication channels, processes call the U-Net device driver, that passes the appropriate commands to the i960 using a special command queue. Communication channels are identified with ATM VCI (Virtual Channel Identifier) pairs that are also used as message tags.

The i960 firmware periodically polls each send queue and the network input FIFO. When it finds a new send descriptor, starts DMA transfers from the related buffer area to the network output FIFO. When it finds new incoming messages, allocates buffers from the free queue, starts DMA transfers and, after last data transfer, writes via DMA the descriptor with buffer pointers into the process receive queue.

U-Net/ATM is not a true zero-copy system because the DMA engine of the SBA-200 card cannot access all the host memory. So user processes must copy data to be sent from their buffers to fixed-size buffers in the buffer area and must copy received data from buffer area to their real destination. Moreover if the number of endpoints required by user processes exceeds the NIC availability, additional endpoints are emulated by the operating system kernel, providing the same functionality, but reduced performance. The U-Net/ATM performance is very close to that of the raw SBA-200 hardware (155 Mbit/s). It achieves about 32 (s one-way latency on short messages and 15 MB/s asymptotic bandwidth. 

2.3.2 U-Net/FE

The Fast Ethernet DC21140 used for U-Net implementation [BvEW96] is a not programmable card, so no firmware has been developed. This network interface lacks any mechanism for direct user access. It uses a DMA engine for data transfers and maintains circular send and receive rings containing descriptors that point to host memory buffers. Such rings are stored in host memory and the operating system must share them among all endpoints. Because of these hardware features, U-Net/FE is completely implemented in the kernel. 

When a process creates an endpoint, the U-Net/FE device driver allocates a segment of pinned physical memory and mapped it in the process address space. Every endpoint is identified by the pair Ethernet MAC address and U-Net port identifier. To create a communication channel, a process has to specify the two pairs that identify the associated endpoints and the U-Net driver returns to it a related tag for message matching. 

To send a message, after posting a descriptor in its send queue, a process must trap to the kernel for transferring the descriptor into the DC21140 send ring. Here descriptors point to two buffers: a kernel buffer containing the Ethernet header and the user buffer in the U-Net buffer area. The trap service routine, after descriptor transfer, issues a poll demand to the network interface that starts the DMA. Upon message arrival the DC21140 moves data into kernel buffers pointed by its receive ring and interrupts the host. The interrupt service routine copies data to the buffer area and inserts a descriptor into the receive queue of the appropriate endpoint.

About performance, the U-Net/FE achieves about 30 (s one-way latency and 12 MB/s asymptotic bandwidth, that is comparable with the result obtained with ATM network. Anyway when several processes require network services such performance quickly degrades because of the heavy host processor involvement.

2.3.3 U-Net/MM

U-Net/MM [BvEW97] is an extension of the U-Net architecture, allowing messages to be transferred directly to and from any part of an application address space. This removes the necessity of buffer areas within endpoints and let descriptors in message queues point to application data buffers. To deal with user virtual addresses, U-Net/MM introduces two elements: a TLB (Translation Look-aside Buffer) and a kernel module to handle TLB misses and coherence. The TLB maps virtual addresses into physical addresses and maintains information about the owner process and access rights of every page frame. A page frame having an entry in TLB is considered mapped into the corresponding endpoint and available for DMA transfers.

During a send operation the U-Net/MM layer looks up the TLB for buffer address translation. If a TLB miss occurs, the translation is required to the operating system kernel. If the page is memory-resident the kernel pins down it and gives its physical address to the TLB, else starts a page-in and notifies to the U-Net/MM layer to suspend the operation. On receive TLB misses may cause message dropping, so a good solution is to have a number of pre-translated free buffers. About TLB coherence U-Net/MM is viewed as a process that shares the pages used by communicating processes, so existing operating system structures can be utilised and no new functionality is added. When the communication layer evicts a page from the TLB, it notifies the kernel for page unpinning. 

U-Net/MM was implemented on a 133 MHz Pentium cluster in two different situations: Linux operating system with 155 Mbit/s Fore Systems PCA-200 ATM network and Windows NT with Fast Ethernet DC21140. For Linux-ATM a two-level TLB is implemented in the i960 firmware, as a 1024-entry direct mapped primary table and a fully associative 16-entry secondary victim cache. During fault handling the i960 firmware can service other endpoints. For Windows-FE the TLB is implemented in the kernel operating system. Experimental results with both implementations showed that the additional overhead for TLB management is very low (1-2 (s) for TLB hits, but can significantly increase in miss case. Anyway on average applications benefit from this architecture extension because it allows to avoid very heavy memory copies. 

1 Virtual Memory Mapped Communication (VMMC)

The VMMC [DFIL96] communication system was developed for the NIC designed for the SHRIMP Multicomputer [ABD+94]. This is a research project started at Princeton University in the first 90s with the goal of building a multicomputer based on Pentium PCs and Intel Paragon routing backplanes [DT92]. VMMC was designed for supporting a wide range of communication facilities, including client/server protocols and message passing interfaces, such as MPI or PVM, in a multi-user environment. It is intended as a basic, low level interface for implementing higher level specialised libraries. 

The basic idea of VMMC is to allow applications to create mappings between sender and receiver virtual memory buffers across the network. In order that two processes can communicate the receiver must give the sender permission to transfer data to a given area of its address space. This is accomplished with an export operation on memory buffers to be used for incoming data. The sender must import such remote buffers in its address space before using them as destinations for data transfers. Representations of imported buffers are mapped into a sender special address space, the destination proxy space. Whenever an address in the destination proxy space is referenced, VMMC translates it into a destination machine, process and virtual address. VMMC supports two data transfer modes: deliberate update and automatic update. Deliberate update is an explicit request to transfer data from a sender virtual memory buffer to a previously imported remote buffer. Such operation can be blocking or non blocking, but no notify is provided to the sender when data arrive at destination. Automatic update propagates writes to local memory to remote buffers. To use automatic update, a sender must create a mapping between an automatic update area in its virtual address space and an already imported receive buffer. VMMC guarantees in order, reliable delivery in both transfer modes. On message arrival, data are transferred directly in the receiver process memory, without interrupting host computation. No explicit receive operation is provided. A message can have an attached notification, causing the invocation of a user handler function in the receiver process after the message has been delivered in the appropriate buffer. The receiving process can associate a separate notification handler with each exported buffer. Processes can be suspended waiting for notifications. 

VMMC was implemented on two custom designed NIC, SHRIMP I and SHRIMP II [BDF+94], attached both to the memory and the EISA bus. The first supports only deliberate update transfer mode and cannot be directly accessed from user space. Deliberate update is initiated with a system call. The second extends functionality. It allows user processes to initiate deliberate updates with memory-mapped I/O instructions and supports automatic update. In both cases exported buffers are pinned down in physical memory, but with SHRIMP I the per process destination table, containing remote physical memory addresses, is maintained in software, while SHRIMP II allows to allocate it on the NIC. 

Both VMMC implementations consist of four parts: a demon, a device driver, a kernel module and an API library. The demon, running on every node with super-user permission, is a server for user processes. They require it to create and destroy import-export and automatic update mappings. The demon maintains export requests in a hash table and transmits import requests to the appropriate exporter demon. When a process requires an import and the matching export has not been performed yet, the demon stores the request in its hash table. The device driver is linked into the demon address space and allows protected hardware state manipulation. The kernel module is accessible from the demon and contains system calls for memory lock and address translation. Functions in the API library are implemented as IPC to the local demon.

Both VMMC implementations were on 60 MHz Pentium PC running the Linux operating system. About one-way latency for few-byte messages, the SHRIMP I implementation exhibited 10.7 (s, while with the SHRIMP II were measured 7.8 (s for deliberate update and 4.8 (s for automatic update. The asymptotic bandwidth was 23 MB/s for deliberate update with both NICs. This is 70% of the theoretical peak bandwidth of the EISA bus. Automatic update on SHRIMP II showed 20 MB/s asymptotic bandwidth.

Successively VMMC was implemented on a cluster of four 166 MHz Pentium running the Linux operating system, interconnected by Myrinet (LANai  version 4.1, 160 MB/s link bandwidth) and Ethernet [BDLP97]. The Ethernet network is used for communication among VMMC demons. This implementation support only deliberate update transfer mode and consists of demon, device driver, API library and VMMC LANai control program. Each process has direct NIC access through a private memory mapped send queue, allocated in LANai memory. For send requests up to 128 bytes the process copies data directly in its send queue. For larger requests it passes the virtual address of the send buffer. Memory translation is accomplished by the VMMC LANai control program, that maintains in LANai SRAM a two-way set associative software TLB. If a miss occurs, an interrupt to the host is generated and the VMMC driver provides the necessary translation after locking the send buffer. The LANai memory contains page tables for import-export mappings too and the LANai control program uses them for translating destination proxy virtual addresses.

Performance achieved by this Myrinet VMMC implementation is 9.8 (s one-way latency and 108.4 MB/s user-to-user asymptotic bandwidth. The authors note that even if Myrinet provides 160 MB/s peak bandwidth, host-to-LANai DMA transfers on the PCI bus limit it to 110 MB/s.

2.4.1 VMMC-2

The VMMC communication system does not support true zero-copy protocols for connection-oriented paradigms. Moreover in the Myrinet implementation reliability is not provided and the interrupt on TLB miss introduces significant overhead. For overcoming these drawbacks the basic VMMC model was extended with three new features: transfer redirection, user-managed TLB (UTLB) and reliability at data link layer. This extended VMMC is known as VMMC-2 [BCD+97]. 

VMMC-2 was implemented on the same Myrinet cluster used for VMMC implementation, but without the Ethernet network. The reason is that with VMMC-2 demons disappear. It is composed only of API library, device driver and LANai control program. When a process wants to export a buffer, the VMMC-2 library calls the driver. This locks the buffer and sets up an appropriate descriptor in LANai memory. When a process issues an import request, VMMC-2 forwards it to the LANai control program. This communicates with the LANai control program of the appropriate remote node to establish the import-export mapping. 

On data sending, the VMMC-2 LANai control program obtains the physical address of the buffer to be sent from the UTLB. This is a per process table containing physical addresses of pinned memory pages belonging to every process. UTLBs are allocated by the driver in kernel memory. Every user process identifies its buffers by a start index and count of contiguous entries in the UTLB. When a process requires a data transfer, it passes the buffer reference to the NIC and this uses it for accessing the appropriate UTLB. The VMMC-2 library has a look-up data structure keeping track of pages that are present in the UTLB. If a miss occurs, the library asks the device driver to update the UTLB. After using, buffers can be unpinned and relative UTLB entries invalidated. For fast access a UTLB cache is software maintained in LANai memory.

At receiving side VMMC-2 introduces transfer redirection, a mechanism for senders that do not know final destination buffer address. The sender uses a default destination buffer, but on the remote node an address for redirection will be posted. If it has been posted before data arrival, VMMC-2 delivers data directly to the final destination, else data will be copied later from the default buffer. If the receiver process posts its buffer address during data arrival, the message will be partially delivered in the default buffer and partially in the final buffer.

VMMC-2 provides reliable communication at data link level with a simple retransmission protocol between NICs. Packets to be sent are numbered and buffered. Each node maintains a retransmission queue for every other node in the cluster. Receivers acknowledge packets and each acknowledgment received by a sender frees all previous packets up to that sequence number. If a packet is lost, all subsequent packets will be dropped, but no negative acknowledgment is sent.

The one-way latency exhibited by the VMMC-2 Myrinet implementation is 13.4 (s and the asymptotic bandwidth is over 90 MB/s.

2.5 Virtual Interface Architecture (VIA)

VIA is the first attempt to define a standard for user-level communication systems. The VIA specification [CIM97], jointly promoted by Compaq, Intel and Microsoft, is the result of contributions from over 100 industry organisations. This is the most significant proof of the needs of industry about user-level communication systems in cluster interconnect technology. 

Since the most interesting application for VIA promoters is the clustering of servers for high performance distributed computing, VIA is particularly oriented to data centre and parallel database requirements. Nevertheless high level communication libraries for parallel computing, such as MPI, can also be implemented on top of VIA.

Several hardware manufacturers are among companies that contributed to define the VIA specification. Their main goal is to extend the standard to SAN design, so that commodity VIA-compliant network devices can gain a position within distributed and parallel computing market, primarily prerogative of proprietary interconnect technologies. At the moment this is accomplished with cLAN [Gig99], by GigaNet, and ServerNet II [Com00], by Compaq, both mainly used in server clusters. Anyway the VIA specification is very flexible and can be completely implemented in software. To achieve high performance, it is recommended to use network cards with user-level communication support, but it is not a constraint. VIA can be implemented also on systems with Ethernet NICs and even on top of the TCP/IP protocol stack. Currently several software implementations are available, among them, Berkeley VIA [BCG98] for the Myrinet network, Modular VIA [BS99] for the Tulip Fast Ethernet and the GNIC-II Gigabit Ethernet, FirmVIA [ABH+00] for the IBM SP NT-Cluster.

VIA borrows ideas from several research projects, mainly those described above. It follows a connection-oriented paradigm, so before a process can communicate with another, it must create a Virtual Interface and request a connection to the desired communication partner. This, if accepts the request, must in turn provide a Virtual Interface for the connection. Each Virtual Interface can be connected to a single remote Virtual Interface. Even if VIA imposes the connection-oriented constraint, the Virtual Interface concept is very similar to that of U-Net endpoint and can resemble also Active Messages II endpoints. Each Virtual Interface contains a send queue and a receive queue, used by the application to post its requests for sending and receiving data. To send a message, a process inserts a descriptor in the send queue. For reception it inserts descriptors for free buffers in the receive queue. Descriptors are data structures containing the information needed for asynchronously processing of application network requests. Both the send and receive queues have an associated Doorbell to notify the NIC that a new descriptor has been posted. Doorbell implementation is strictly dependent on the NIC hardware features. 

As soon as the NIC finishes to serve a request, it marks the corresponding descriptor as completed. Processes can poll or wait on their queues. In the second case the NIC must be informed that an interrupt should be generated for the next completion on the appropriate queue. As an alternative VIA provides a Completion Queue mechanism. Multiple Virtual Interfaces can be associated to the same Completion Queue and queues from the same Virtual Interface can be associated to different Completion Queues. This association is established when the Virtual Interface is created. As soon as the NIC finishes to serve a request, it inserts a pointer to the corresponding descriptor in the appropriate Completion Queue. Processes can poll or wait on Completion Queues.

Other than Virtual Interfaces and Completion Queues, VIA is composed by Virtual Interface Providers and Consumers. A Virtual Interface Provider consists of a NIC and a Kernel Agent, that substantially is a device driver. A Virtual Interface Consumer is the user of a Virtual Interface and is generally composed of an application program and a User Agent, implemented as a user library. This can be used directly from application programmers, but it is mainly targeted to high level interface developers. The User Agent contains functions for accessing Virtual Interfaces and functions interfacing the Provider. For example, when a process wants to create a Virtual Interface, it calls a User Agent function that in turn calls a Kernel Agent function. This allocates the necessary resources, maps them in the process virtual address space, informs the NIC about their location and supplies the Consumer with the information needed for direct access to the new Virtual Interface. The Kernel Agent is also responsible for destruction of Virtual Interfaces, connection set-up and tear down, Completion Queue creation and destruction, process interrupt, memory registration and error handling. All other communication actions are directly executed at user level. 

VIA provides both send/receive and Remote Direct Memory Access (RDMA) semantics. In the send/receive model the receiver must specify in advance memory buffers where incoming data will be placed, pre-posting an appropriate descriptor to its Virtual Interface receive queue. Then the sender can post the descriptor for the corresponding send operation. This eliminates buffering and consequent memory copies. Sender and receiver are notified when respective descriptors are completed. Flow control on the connection is responsibility of Consumers. RDMA operations are similar to Active Messages PUT and GET and VMMC transfer primitives. Both RDMA write and read are particular send operations, with descriptors that specify source and destination memory for data transfers. The source for an RDMA write can be a gather list of buffers, while the destination must be a single, virtually contiguous buffer. The destination for an RDMA read can be a scatter list of buffers, while the source must be a single, virtually contiguous buffer. Before descriptors for RDMA operations can be posted to the Virtual Interface send queue of a requesting process, the requested process must communicate remote memory location to the requestor. No descriptors are posted to the Virtual Interface receive queue of the remote process and no notification is given to the remote process when data transfer has finished.

All memory used for data transfers must be registered with the Kernel Agent. Memory registration defines one or more virtually contiguous pages as a Memory Region. This is locked and the relative physical addresses are inserted into a NIC Page Table, managed by the Kernel Agent. Memory Regions can be used multiple times, saving locking and translation costs. It is Consumer responsibility to de-register no more used Memory Regions.

One of the first hardware implementations of the VIA specification is the GigaNet cLAN network [Gig99]. Its performance has been compared with that achieved by an UPD implementation on the Ethernet Gigabit GNIC II [ABS99], that exhibits the same peak bandwidth (125 MB/s). About asymptotic bandwidth GigaNet reached 70 MB/s against 28 MB/s of Ethernet Gigabit UDP. One-way latency for small messages (< 32 bytes) is 24 (s for cLAN and over 100 (s for Ethernet Gigabit UDP.

The Berkeley VIA implementation [BCG98] on a Sun UltraSPARC cluster interconnected by Myrinet follows strictly the VIA specification. It keeps all Virtual Interface queues in host memory, but maps in user address space a little LANai memory for doorbell implementation. One-way latency exhibited by Berkeley VIA for few-byte messages is about 25 (s, while asymptotic bandwidth reaches around 38 MB/s. Note that the Sbus limits DMA transfer bandwidth to 46.8 MB/s.
Chapter 3

The QNIX Communication System

In this chapter we describe the communication system designed for the QNIX interconnection network [DLP01], actually in development at R&D department of Quadrics Supercomputers World in Rome. Such system is not QNIX dependent and can be implemented on every SAN with a programmable NIC. However there is a strict synergy between the hardware design of QNIX and its communication system. One of the main goals of this interconnection is unloading as much as possible the host CPU from the communication task, so that a wide overlapping between computation and communication can be made possible. For this purpose the communication system is designed in such a way that a large part of it runs on the NIC and the NIC, in turn, is designed for giving the appropriate support. As a consequence the performance that can be obtained implementing our communication system on another SAN depends on the features that this SAN exhibits.  

The QNIX communication system is a user-level message passing, mainly oriented to parallel applications in cluster environment. This is not meaning that the QNIX communication system cannot be used in other situations, but simply that it is optimised for parallel programming. Anyway at the moment it practically supports only communication among processes belonging to parallel applications. 

One of the main goals of the QNIX communication system, which any application area will benefit, is delivering to final users as much network bandwidth as possible. For this purpose it limits software communication overhead, allowing user processes a direct and protected access to the network interface. From a point of view more specifically related to parallel programming, the QNIX communication system has the goal of supporting an efficient MPI implementation. This is because MPI is the de facto standard in message passing programming. For this reason the interface that our communication system provides to high layers, the QNIX API, avoids mismatches with MPI semantics and we are working for an extension that will provide better multicast support directly on the network interface. Particular attention is paid to short message processing since they are very frequent in parallel application communication patterns. 

The communication system described here consists of three parts: a user library, a driver and a control program running on the NIC processor. 

The user library, the QNIX API, allows user processes both to request few operating system services and to access directly the network device. There are substantially two specific points for the operating system, managed by the driver. One is the registration of the user processes to the network device and the other is virtual address translation for NIC DMA utilisation. The control program running on the NIC processor is responsible for scheduling the network device among requiring processes, retrieving data to be sent directly from user process memory, delivering arriving data to the right destination process directly in its receive buffer and handling flow control.

This chapter is structured as follows. Section 3.1 gives an overview of the QNIX communication system. Section 3.2 discusses the design choices, referring to the six issues presented in section 1.3. Section 3.3, 3.4, 3.5 and 3.6 describe in detail, respectively, the data structures used by the QNIX communication system, the device driver, the NIC control program and the QNIX API. Section 3.7 illustrates work in progress and future extensions.

3.1 Overview 

The basic idea of the QNIX communication system is simple. Every process that needs network services obtains its own Virtual Network Interface. Through this, the process gains direct access to the network device without operating system involvement. The network device schedules itself among the requests of all processes and executes data transfers from/to user memory buffers, with no intermediate copies, using the information that every process has given to its Virtual Network Interface. 

In order to obtain its Virtual Network Interface, a process must require the driver to be registered on the network device. This must be accomplished as the first action in the process running and occurs just once in the process life. During registration the driver inserts the process into the NIC Process Table and maps a fixed size chunk of the NIC local memory into the process address space. The NIC memory chunk mapped to the process virtually represents its own network interface. It contains a Command Queue where the process can post its requests to the NIC, a Send and a Receive Context List where the process can put information for data transfers, a number of Context Regions where the process can put data or page tables for the NIC to access data buffers, a Buffer Pool where the process can put the page tables for a predefined buffer set. On the host side the driver allocates, initialises and maps in the process address space a small non-swappable memory zone. This is for communication and synchronisation between the process being registered and the network device. It contains three data structures, the NIC Memory Info, the Virtual Network Interface Status and the Doorbell Array. The NIC Memory Info contains the pointers to the various components of the process Virtual Network Interface. The Virtual Network Interface Status contains the pointers to the most probably free entry in the Send and Receive Context List and the first free entry in the Command Queue. The Doorbell Array is used by the NIC for notifying the process when its requests have been completed.

After a process has been registered, it can communicate with any other registered process through message exchange. On sending side the QNIX communication system distinguishes two kinds of messages, short and long. Short messages are transferred in programmed I/O mode, while long messages are transferred by means of the DMA engine of the NIC. This is because for short messages the DMA start-up cost is not amortised. On receiving side, instead, all messages are transferred via DMA because, as we will see later, programmed I/O in this direction has more problems than advantages. To allow DMA transfers, user buffers must be locked and their physical addresses must be communicated to the NIC. Only the driver can execute these operations on behalf of a process. Processes can get a locked and memory translated buffer pool or can request lock and translation on the fly. 

Now let us describe briefly how the communication between processes occurs. Let be A and B two registered processes and suppose that process A wants to send data to process B. Process A must create a Send Context in its Send Context List. The Send Context must specify the destination process, a Context Tag and the page table for the buffer to be sent or directly data to be sent for short messages. About buffer, it can be one from the Buffer Pool or a new buffer locked and memory translated for the send operation. In the first case the Send Context contains the buffer displacement in the Buffer Pool, in the second the related page table is put in the Context Region associated to the Send Context. For a short message, instead, process A must write data to be sent in the Context Region. Moreover, if process A needs to be notified on completion, it must set the Doorbell Flag in the Send Context and poll the corresponding Doorbell in the Doorbell Array. Then process A must post a send operation for the just created Send Context in its Command Queue. As soon as the control program running on the NIC detects the send command by process A, inserts it in the appropriate Scheduling Queue. NIC scheduling is based on a double level round robin politics. The first level is among requesting processes, the second among pending requests of the same process. Every time the process A send command is scheduled, a data packet is injected into the network.

On receiving side process B, before posting the receive command, must create the corresponding Receive Context, specifying the sender process, a matching Context Tag, the buffer where data are to be transferred and the Doorbell Flag for notification. As soon as an arriving data packet for this Receive Context is detected by the NIC, the control program starts the DMA for transferring it to the destination buffer specified by process B. As for send operation, such buffer can belong to the Buffer Pool or be locked and memory translated on the fly. 

If data from process A arrive before process B creates the corresponding Receive Context, the NIC control program moves them into a buffer in the NIC local memory, for being transferred to their final destination as soon as the relative Receive Context becomes available. A flow control algorithm implemented at level of NIC control program prevents buffer overflow. 

3.2 Design Choices
Even if it has been defined with a high degree of generality, currently the QNIX communication system supports only communication between processes composing parallel applications. Multiple applications can be simultaneously running in the cluster, but at most one process from each of them can be allocated on a node. Every parallel application is identified by an integer number uniquely defined in the cluster. We call this number Application Identifier (AI). A configuration file associates every cluster node to an integer between zero and n-1, where n is the number of nodes in the cluster. This is assigned as identifier to every process allocated on the node and we call it Process Identifier (PI). In this scenario the pair (AI, PI), uniquely defined, represents the name of every process in the cluster. Such naming assignment is to be considered external to the communication system and we assume that every process knows its name when it asks the driver for registering itself to the network device. Moreover we consider every parallel application as a process group and use the AI as group name. Communication among processes belonging to different groups is allowed.

More specific comments on our design issues are in order:

Data Transfer – Depending on message size, programmed I/O or DMA transfers are used for moving data from host to NIC. Communication systems using only DMA transfers penalize short messages performance because the DMA start-up cost is not amortised. Since parallel applications often exhibit a lot of short messages in their communication pattern, we have decided to use programmed I/O for such messages. The threshold for defining a message as short depends on factors that are strictly platform dependent, mainly the PCI bus implementation. For example, the Intel PCI bus supports write-combining, a technique that boost programmed I/O throughput combining multiple write commands over the PCI bus into a single bus transaction. With such a bus programmed I/O can be faster than DMA also for messages up to 1024 bytes. Anyway programmed I/O keeps busy the host CPU, so its utilization prevents overlapping between process computation and this communication phase. On the other side no memory lock and address translation are required. 

Since various factors are to be considered for fixing the maximum size for a short message, we let the user the freedom of choosing an appropriate value for its platform. Giving such a possibility makes sense because the QNIX communication system is mainly targeted to high level interface developers.

About data transfers from NIC to host only DMA transfers are allowed. This is because programmed I/O in this direction has more problems than advantages, both if the process reads data from the PCI bus or if the NIC writes data in a process buffer. Indeed reads over the PCI bus are typically much slower than DMA transfers. If the NIC writes in programming I/O mode in a process buffer, this must be pinned, related physical addresses must be known to the NIC and cache coherence problems must be solved.

Address Translation – Since NIC DMA engines can work only with physical memory addresses, user buffers involved in DMA data transfers must be locked and their physical addresses must be communicated to the NIC. Our communication system provides a system call that translates virtual addresses into physical ones. User processes are responsible for obtaining the physical addresses of their memory pages used for data transfers and communicating them to the NIC. 

A process can lock and pre-translate a buffer pool, request lock and translation on the fly or mix the two solutions. A buffer pool is locked for the whole process lifetime, so it is a limited resource. Its main advantage is that buffers can be used many times paying system call overhead only once. Anyway if the process is not able to prepare data directly in a buffer of the pool, a memory copy can be necessary. On the other side, instead, when the process requests the driver to lock and translate addresses for a new buffer, it gets a true zero-copy transfer, but such a buffer must be also unlocked after use. 

Tradeoffs between memory copy and lock-translate-unlock mechanism can be very different depending on message size and available platform, so it is programmer responsibility to decide the best strategy.

Protection – The QNIX communication system gives every process direct access to the network device through its Virtual Network Interface. Since this is a NIC memory zone that the device driver maps in process address space, memory protection mechanisms of the operating system guarantee that there will be no interference among various processes. However a malicious process could cause NIC DMA engine accesses to host memory of another process. This is because user processes are responsible for informing the NIC about physical addresses to be accessed and the NIC cannot check if the physical addresses it receives are valid. Anyway in parallel application environment this would not be a problem. In other contexts the solution can be let the driver to communicate physical addresses to the NIC.

Control Transfer – Since interrupts from the NIC to the host CPU are very expensive and event driven communication is not necessary for parallel applications, a process waiting for arriving data polls a doorbell in host memory. This will reside in data cache because polling is executed frequently, so no memory traffic is generated. For ensuring cache coherence the NIC sets doorbells via DMA.
Reliability – Our communication system assumes that the underlying network is reliable. This means that data are lost or corrupted only for fatal events. With this assumption the communication system must only guarantee that no packets are lost for buffer overflow. To prevent such situation the NIC control program implements the following flow control algorithm. Every time it inserts a new send command in a Scheduling Queue, the NIC control program asks the destination NIC for permission of sending data. The sender achieves such permission if the receiver process has already created the corresponding Receive Context or the destination NIC has sufficient buffer space for staging arriving data. When the send operation reaches the head of the Scheduling Queue, the NIC control program checks if the requested permission is arrived. If so, the send is started, otherwise it is put in the tail of the Scheduling Queue and permission is requested again. If permission arrives more than once, the NIC control program simply discards duplicates.

Multicast Support – The QNIX communication system supports multicast as multiple sends at NIC level. Practically when the NIC control program reads a multicast command from a process Command Queue, it copies data to be sent in its local memory and then inserts as send operations as the receivers in the appropriate Scheduling Queue. This prevents data to cross the I/O bus more than once, eliminating the major bottleneck of this kind of operations. However such solution is not so efficient as a distributed algorithm could be.

3.3 Data Structures
The QNIX communication system defines a number of data structures both in host and NIC memory. We distinguish between Process Structures and System Structures. With Process Structures we mean data structures mapped in user process address space, while with System Structures we mean data structures for internal use by the communication system. Depending on where, host or NIC memory, the data structures are allocated, we have NIC Process Structures, Host Process Structures, NIC System Structures and Host System Structures. In the following we describe in detail all four types of the QNIX communication system data structures. 

3.3.1 NIC Process Structures (NPS)

The NPS are data structures allocated in NIC local memory and mapped in user process address space. Practically they represent the Virtual Network Interfaces achieved by processes after their registration to the network device. A sufficiently large number of Virtual Network Interfaces are pre-allocated when the driver loads the NIC control program. This occurs during the registration of the driver to the operating system. 

Here sufficiently large number is meaning that we would be able to accommodate all processes that simultaneously require network services. If in some instant there are more requiring processes than available Virtual Network Interfaces the driver has to allocate new Virtual Network Interfaces on the fly. This can be done both in NIC or host memory. In the first case the NIC memory space reserved for message buffering is reduced, in the second a swap mechanism must be introduced. Both these solutions cause a performance decreasing and would be avoided. For this reason our communication system needs a large quantity of NIC local memory, so that at least 128 processes can be simultaneously accommodate. This seems a reasonable number for real situations. 

In figure 2 is shown a Virtual Network Interface with its components. As we can see, the Command Queue has N entries, where N ≥ 2M is the maximum number of pending commands that a process can have. The Command Queue is a circular queue. The owner process inserts its commands in the tail of the queue and the NIC control program reads them from the head. Commands by the process remain in the Command Queue until the NIC control program detects them. When this occurs the detected commands become active commands. We observe that even if commands by a process are read in order by the NIC control program, they can be completed out of order. 

Each entry of the Command Queue contains four fields, Command, Context, Group and Size. The first is for a command code that the NIC control program uses for deciding the actions to be taken. The commands that are currently supported are the following: Send, Send_Short, Broadcast, Broadcast_Short, Multicast, Multicas_Short, Join_Group, Receive and Barrier. The Context field is for identifying the Send or Receive Context relative to a data transfer requirement. Practically it is an index in the Send or Receive Context List. The Group field indicates a group name and is used only for Broadcast, Broadcast_Short, Barrier and Join_Group commands. The Size field indicates the number of involved processes. It is used only for Multicast, Multicast_Short, Barrier and Join_Group.

 Both the Send and Receive Context List have M entries, where M is the maximum number of pending send and receive operations that a process can simultaneously maintain on the network device. These lists are allocated in the NIC memory as two arrays of structures, describing respectively Send and Receive Contexts. 


Each Send Context is associated to a send operation and is the place where the process, among the other things, puts information that the NIC control program uses to create the fixed part of packet headers, that is destination node, destination process and tag for the data transfer. This is done just once when the NIC control program detects the process command and is used for all packets composing the message to be sent. For this purpose the Send Context has two fields, Receiver Process and Context Tag. The first is where the owner process puts the name of the process it wants to send data. The NIC control program translates such a name into the pair (Destination Node, PID). This field will contain special values in the case of global operations, such as broadcast or multicast. The Context Tag field is where the process puts the tag for the message to be sent. The Doorbell Flag field indicates if the process wants a NIC notification when the send operation completes. The Buffer Pool Index field is used only if the send operation is form the predefined buffer pool. In this case it contains the index of the corresponding element in the Buffer Pool array. Otherwise its value is null and the process must put the page table for the buffer containing data to be sent in the Context Region automatically associated to the Send Context. The Size field is for the number of pages and the Len field for the number of bytes composing the data buffer to be sent. For short messages the Context Region is used as a programmed I/O buffer, that is the process writes data to be sent directly in it. In this case the Size field has always value 1.

Each Receive Context is associated to a receive operation and is the place where the process, among the other things, puts information allowing the NIC control program to associate incoming data to their final destination, that is source process and tag. When the NIC control program detects the process command, it translates the name that the process has put in the Sender Process field of its Receive Context in the pair (Source Node, PID) and stores it together with the Context Tag content for future matching. Both the Sender Process and the Context Tag fields can contain special values such as Any_Proc, for receiving from any process and Any_Tag, for receiving messages with any tag. The Doorbell Flag, the Buffer Pool Index, the Size and the Len fields have the same purpose than in the Send Context structure. Every Receive Context is automatically associated to a Context Region for the page table of the destination buffer. 

Every Virtual Network Interface has 2M Context Regions, one for every Send and Receive Context. Association between Context Regions and Contexts is static, so that every time a Context is referred, its Context Region is automatically referred too. In Context Regions the process must put the page tables for buffers involved on the fly in data transfers. Each Context Region has K entries, where K is the maximum number of packets allowed for a message. The size of a packet is ≤ the page size of the host machine and a packet cannot cross the page boundary, so the number of packets composing a message is the same than the number of host memory pages involved in the data transfer. For messages longer than a Context Region can accommodate, currently two data transfers are needed. Every entry in a Context Region is a Descriptor for a host memory page. This has four fields: Address for the physical address of the page, Offset for the offset from the beginning of the page (for buffers not page aligned), Len indicating the number of bytes utilised inside the page and Flag for validating and invalidating the Descriptor.

The Buffer Pool is an array of Q elements, where Q is the maximum number of pages that a process can keep locked for all its lifetime. It represents a virtually contiguous memory chunk in the process address space to be used as a pool of pre-locked and memory translated buffers. The Buffer Pool array is filled by the owner process just once, when it allocates the buffer pool. Each entry contains the physical address of a memory page composing the pool. Buffers from the pool are always page aligned and the value of the Buffer Pool Index field in a Send or Receive Context indicates the first buffer page. The Buffer Pool is entirely managed by the owner process. Data transfers using buffers from the Buffer Pool cannot exceed the maximum size allowed for a message.

3.3.2 Host Process Structures (HPS)

The HPS are data structures allocated in host machine kernel memory and mapped in user process address space by the device driver during the registration of the process to the network device. They store the process access points to its Virtual Network Interface and contain structures for synchronisation between the process and the network device. For each Virtual Network Interface mapped in user space, a kernel memory page is allocated from a pool of pages in the device driver address space. In this page the HPS are created and initialised. Then the page is mapped in process address space. 

Figure 3 shows the components of the HPS. The NIC Memory Info is a structure containing the pointers to the beginning of each component of the process Virtual Network Interface. The Command Queue field is the pointer to the first entry in the Command Queue, that practically is the same than the first location of the Virtual Network Interface. The other field values can be obtained adding the appropriate offsets to the value of the Command Queue field because the components of a Virtual Network Interface are consecutively allocated in NIC memory. This data structure is used by the process to calculate the access points to its Virtual Network Interface during its running. Offsets for this purpose are contained in the Virtual Network Interface Status structure. 


Initial values of the fields of the Virtual Network Interface Status structure are zero, so that both the Command Queue Tail and Command Queue Head fields provide offsets for referring the first entry in the Command Queue, meaning the Command Queue is empty. The Send and Receive Context fields provide offsets corresponding to the first Context respectively in the Send and Receive Context List, that are surely available. During running the process increments (mod N) the value of the Command Queue Tail every time it posts a new command, so that this field always contains the offset pointing to the first free entry in the Command Queue. The NIC control program, instead, adds eight (mod N) to the value of the Command Queue Head after it has read eight new commands from the Command Queue. These two fields are used by the process for establishing if the Command Queue is full. In this case the process must wait for posting new commands. About Contexts, every time the process needs one, it must check the Doorbell corresponding to the Context referred in its Virtual Network Interface Status structure for knowing if it is free. If so, the process takes it and increments (mod M) the value of the Send or Receive Context field. This guarantees that the Context referred is always that one posted the longest time ago, and, thus, the most probably free. If the process finds that the Context referred in its Virtual Network Interface Status is not free, it must scan its Doorbell Array from the next Context onwards, looking for the first free Context. If any, the process takes it and sets the Send or Receive Context field to the offset pointing to the next Context in the corresponding Context List. Otherwise it repeats scanning until a process becomes free. 

The Doorbell Array structure is composed by two arrays, Send Doorbell and Receive Doorbell, where every element is associated respectively to a Send or a Receive Context. Each element of this array can assume three possible values: Free, Done and Used. Free means that the corresponding Context can be taken by the process and is the initial value of all Doorbells. Both the NIC and the process can assign this value to a Doorbell. The NIC when it has finished to serve the corresponding Context for an operation that has not required a notification. The process, instead, when it receives the completion notification that it has required to the NIC for the corresponding operation. Used means that the corresponding Context has been taken by the process and not yet completed by the network device. The process assigns this value to a Doorbell when it takes the corresponding Context. Done means that the network device has finished to serve the corresponding Context and explicitly notifies the process. When the process reads this notification, it sets to Free the Doorbell value.
3.3.3 NIC System Structures (NSS)

The NSS are data structures allocated in NIC memory and accessed only by the NIC control program and the device driver. Some of them are statically allocated when the device driver loads the NIC control program, others are dynamic. The device driver accesses some of these structures for registering and de-registering user processes. The NIC control program, instead, uses them for keeping track of the operation status of each registered process and for implementing its scheduling strategy. Moreover, some data structures of this group are used for global network information, such as the allocation map of all processes using the network in the cluster.

The first data structure we describe is the Process Table. This is an array of structures, where each entry contains the PID of a process that the driver has registered to the network device, the information necessary to the NIC control program for communication and synchronisation with this process, and the status of the corresponding Scheduling Queue and Receive Table.

 Assigned entries of the Process Table are inserted in a circular double linked list, used as Scheduling Queue for the first level of the round robin.

The fields of the Virtual Network Interface Info structure in each Process Table entry are pre-initialised when the driver loads the NIC control program because they contain the pointers to the various components of the Virtual Network Interface statically associated to every entry. The Doorbell Info structure, instead, is initialised by the driver during the process registration with the pointers to the fields of the Doorbell Array structure that it has mapped in the process address space.


The Command Queue structure has two fields, NIC Command Queue Head and Process Command Queue Head. The first contains the offset pointing to the head of the process Command Queue and is used by the NIC control program for reading process commands. Its initial value is zero, so that it refers to the first entry in the Command Queue of the Virtual Network Interface and is incremented (mod N) by the NIC control program every time it reads a new command by the process. After it reads a new command, the NIC control program reset to zero the relative Command Queue entry. This allows the NIC to check the process Command Queue status, without reading the tail pointer on the bus. The Process Command Queue Head field, instead, contains the pointer to the field Command Queue Head of the Virtual Network Interface Status in the HPS and is used by the NIC control program to update such field, so that the process can check its Command Queue status. This update is executed every eight commands read by the NIC control program.  

The Scheduling Status structure contains the pointers to the head and the tail of the Scheduling Queue associated with the Process Table entry. This is a circular queue used for NIC round robin among pending send operations of the same process. Every time the NIC control program detects a new send command in the process Command Queue, moves it in the tail of the associated Scheduling Queue. When the process is scheduled by the first level of the round robin, a packet of the send operation in the head of the Scheduling Queue is injected into the network. The Receive Table Status, finally, contains the pointer to the last entry in the Receive Table associated with the Process Table entry. Both Scheduling Queues and Receive Tables are dynamically managed, so at the beginning all references contain null values.


Each Scheduling Queue is a circular double linked list, where every entry contains the information related to a pending send. This is organised in two data structures, Send Info and Header Info. Send Info is composed by the fields Command, Context, Len and Descriptor. The Command field value puts together the process send command and the Doorbell Flag indicated in the corresponding Send Context. The Context field contains the process specified index into the Send Context List. To access such Context, this value is added to the value of the Send Context List field in the Virtual Network Interface Info structure. In Len is stored the message length in bytes. Every time the send operation is scheduled this value is appropriately decremented and when it becomes zero, the operation completes. The Descriptor field contains the pointer to the next Descriptor to be served in the corresponding Context Region or Buffer Pool. The Header Info structure contains information for packet headers. Besides these two data structures, each Scheduling Queue entry contains the Permission Flag field. This is used by the flow control algorithm. When the NIC control program creates the Scheduling Queue entry, the Permission Flag value is zero and a permission request is sent to the destination NIC. If the destination NIC can accept the data transfer, it sends back the requested permission and the NIC control program changes the value of the Permission Flag.

Each Receive Table is a double linked list, where every entry contains the information about a pending receive operation. A Receive Table entry is composed by two data structures, Receive Info and Match Info. Receive Info is composed by the fields Command, Context, Len, Buffer and Descriptor Map. Match Info contains information for matching incoming data, that is Source Node, Source PID and Context Tag.

In the Receive Table are inserted both the receive operations posted by the corresponding process and the NIC receive operations for incoming data not yet required. 

When the NIC control program reads a receive command from the process Command Queue, it retrieves the corresponding Receive Context and initialises the Match Info structure and the fields Command, Len and Context of the Receive Info structure. They are similar to the same fields in a Scheduling Queue entry. As we saw above, before the sender NIC can transmit data, it must ask for data transfer permission. During this operation the sender NIC sends a system message with the following information: destination process, sender process, Context Tag, message length in bytes, number of packets composing the message and packet length in bytes. This allows the destination NIC to verify if the receiver process has posted the receive command for the required transmission. If so, the NIC control program uses the information about incoming message and the information in the Context Region or in the Buffer Pool for creating the Descriptor Map that will be pointed by the Descriptor Map field of the Receive Info structure. Since the buffer of the sender process generally has not the same alignment of the buffer of the receiver process, the Descriptor Map stores information about how every incoming packet must be transferred into the destination buffer. Practically the Descriptor Map associates every incoming packet with one or two consecutive Descriptors of the receive buffer, specifying appropriate offset and length.

When the NIC receives a data transfer permission request for a message not yet required by the destination process, it creates a new entry in the process Receive Table and initialises the Match Info structure with the information achieved by the sender NIC. In the Receive Info structure are filled only the Buffer and Descriptor Map fields. The first contains the pointer to a NIC memory buffer allocated for staging incoming data, while the second contains the pointer to a simple Descriptor Map. This associates every incoming packet to the appropriate offset in the staging buffer. For every received packet a flag is set in this Descriptor Map. When the process posts the corresponding receive command, the NIC control program fills the other fields of the Receive Info structure, calculates the final Descriptor Map, delivers already arrived packets to the process and dismisses the staging buffer. From now new incoming data are directly delivered to the receiver process.

Besides data structures described until now, the NSS contain also two data structures, Driver Command Queue and Driver Info, for communication and synchronisation with the device driver. 


The first is a circular queue similar to a process Command Queue, with six fields for every entry, Command, Name, PID, Index, Group and Size. Currently two commands are supported: New_Process and Delete_Process. Driver commands are executed immediately and the Driver Command Queue is checked at the end of every operation. The Name and PID fields are for identifying processes. The Group and Size field are used only for processes belonging to a group. The first is for the group name and the second for the number of processes composing the group. The Index field contains the process position in the NIC Process Table. 

The Driver Info structure contains the offset pointing to the head of the Driver Command Queue, the address of the driver pointer to the head of its Command Queue and the pointer to the Driver Doorbell Array. The NIC Driver Command Queue Head field is incremented (mod D) by the NIC control program every time it reads a new command by the driver. As for process Command Queues, the NIC control program, after reading a new command, sets to zero the relative Driver Command Queue entry. The Driver Command Queue Head Pointer field is used by the NIC control program to update the head pointer to the Driver Command Queue in host memory, so that the driver can check its Command Queue status. This update is executed every eight commands read by the NIC control program. The Driver Doorbell Array Pointer field allows the NIC to notify the driver that a command has been executed.

Finally the NSS contain three global tables, the NIC Table, the Name Table and the Group Table. The first contains information about all NICs in the cluster, the second about all processes registered in the cluster, the third about all process groups formed in the cluster.


The NIC Table is an array of R structures, where R is the maximum number of nodes that the cluster network can support. Each entry of this table associates a hardwired unique NIC identifier, contained in the Id field, to the position of the corresponding NIC in the SAN. Since the QNIX interconnection network has a toroidal 2D topology, for NIC position we mean its spatial coordinates in the mesh. Cluster topology is stored in a configuration file and is copied in the NIC Table when the device driver loads the NIC control program. This table is used for system broadcast operations. 

The Name Table is an array of T structures, where T is the maximum number of processes that can be registered in the cluster. Each entry of this table associates a process identifier, contained in the Name field, to a unique identifier of the NIC where the process is registered and the PID assigned to the process by the operating system. Here the NIC identifier is the pair of its network spatial coordinates. Process names are assigned out of the QNIX communication system and are supposed unique. When a process is registered to the network device, the NIC control program broadcasts its name and PID together with the NIC identifier to all NICs in the cluster, so that they can add a new entry in their Name Table. This table is used for retrieving information about sender/receiver processes referred by name in Receive/Send Contexts. 

The Group Table is an array of G structures, where G is the maximum number of process groups that can be created in the cluster. A process group is an application defined process set. It is application responsibility to decide conditions for inter-process communication. It can be limited only inside process groups or allowed between any registered process pair. Some applications do not define groups at all. Each entry of the Group Table associates a group identifier, contained in the Name field, to the list of processes composing the group, pointed by the Process List field. This is a double linked list with each node pointing to a Name Table entry. The Size field indicates the number of processes composing the group. A process can be in more than one group. When a process is registered to the network device, it can define its belonging to a group. In this case the NIC control program broadcasts this information to all NICs in the cluster. Process groups can be created in any moment in runtime. This table is used for broadcast operations. 

Since currently the QNIX communication system supports communication only between processes belonging to parallel applications, process names are all pairs of kind (AI, PI) and every process belongs at least to the group corresponding to its parallel application.

3.3.4 Host System Structures (HSS)

The HSS are data structures statically allocated in the device driver address space. They store the driver access points to the NIC and contain structures for synchronisation between the driver and the network device. 

The NIC local memory can be conceptually divided in six segments: Virtual Network Interfaces, NIC Process Table, Driver Command Queue, NIC Control Program Code, NIC Internal Memory and NIC Managed Memory. 


The NIC Memory Map structure contains the pointers to the beginning of all such segments. The NIC Internal Memory and NIC Managed Memory segments are only accessible by the NIC control program. The first contains the NIC Table, the Name Table, the Group Table and the Driver Info. The second is a large memory block used for dynamic allocation of Scheduling Queue entries, Receive Table entries, Descriptor Maps, memory buffers for incoming data not yet required by the destination process and Process List entries for the Group Table.

Besides the NIC Memory Map, the HSS contain the Driver Doorbell Array and the NIC Status structure. The Driver Doorbell Array has as many elements as the Driver Command Queue, so that every doorbell is statically associated to a Driver Command Queue entry. When the NIC control program completes a driver command execution, it uses the position of the command in the Driver Command Queue for referring the corresponding doorbell and notifying the driver. The command position in the Driver Command Queue is the offset to be added to the value of the Driver Doorbell Array Pointer field into the Driver Info structure. 

The NIC Status, finally, contains the offsets for pointing to head and tail of the Driver Command Queue, the offset for pointing to the most probably free entry in the NIC Process Table and a flag array indicating the status of every NIC Process Table entry. The driver increments (mod D) the Driver Command Queue Tail field every time it posts a new command, while the NIC control program adds eight (mod D) to the value of the Driver Command Queue Head field after it has read eight new commands by the driver. 

The Process Table Entry field at the beginning contains zero, referring the first entry in the NIC Process Table, that is surely available. Every time a new process has to be registered to the network device, the driver checks the flag corresponding to the NIC Process Table entry referred by the Process Table Entry field for knowing if it is free. If so, it inserts the process there and increments (mod P) the field value. This guarantees that the entry referred is always that one used the longest time ago, and, thus, the most probably free. If the driver finds that the Process Table entry referred in the NIC Status structure is not free, it must scan the Process Flag Array from the next entry onwards, looking for the first free entry. Since the size P of the NIC Process Table will be at least 128, it seems reasonable to think that the driver always finds a free entry. After inserting the process into the NIC Process Table, it sets the Process Table Entry field to the offset pointing to the next entry.

The Process Flag Array is a flag array, where every element is associated to a NIC Process Table entry. Each element of this array can contain zero or the PID of the process registered in the corresponding NIC Process Table entry. Zero means that the corresponding NIC Process Table entry is free. Only the driver can change a flag value when it registers or de-registers a process.
3.4 The Device Driver
The QNIX device driver has been realised as a kernel module for the Linux operating system, kernel version 2.4. Its main functionalities are process registration and de-registration, respectively, to and from the network device, and virtual memory address translation.

Process registration to the network device is executed just once, when the process running starts. It can be described as a sequence of the following steps. 

Step 1 – The driver looks for the next free entry in the NIC Process Table and assigns it to the new process, writing its operating system PID into the corresponding flag of the Process Flag Array (Figure 9). 

Step 2 – The driver posts a New_Process command in its Command Queue specifying name, PID, group name, group size and NIC Process Table position of the new process. Moreover the number of processes composing the group are indicated. The NIC control program broadcasts information about the process to all NICs in the cluster and inserts the Process Table entry assigned to the process into its first level Scheduling Queue. Contemporaneously the driver proceeds with the other registration steps. 

Step 3 – The driver calculates the address of the Virtual Network Interface for the new process, adding the process position in the NIC Process Table to the content of the Virtual Network Interfaces field of the NIC Memory Map structure (Figure 9). This is because every element of the NIC Process Table is statically associated to the Virtual Network Interface with the same index. Then it maps the Virtual Network Interface in the process address space.

Step 4 – The driver allocates a kernel memory page from a page pool in its address space, creates the HPS (Figure 3) for the new process and maps the page in process address space. Since the Command Queue is the first element in the Virtual Network Interface (Figure 2), its address is that of the Virtual Network Interface. Such value is stored in the Command Queue field of the NIC Memory Info structure (Figure 3). The other fields of this structure are initialised adding appropriate offsets to the Command Queue field value. All fields in the Virtual Network Interface Status structure (Figure 3) are set to zero, so that initially process access points to its Virtual Network Interface are set to the beginning of each component. All elements of the two fields of the Doorbell Array structure (Figure 3) are set to Free.

Step 5 – The driver inserts the process PID and initialises the NIC access points to the process HPS in the related NIC Process Table entry. It sets the Send Doorbell and Receive Doorbell fields of the Doorbell Info structure (Figure 4) to point, respectively, to the Send Doorbell and Receive Doorbell field of the Doorbell Array structure (Figure 3). Then it assigns the pointer to the Command Queue Head field of the Virtual Network Interface Status structure (Figure 3) to the Process Command Queue Head field of the Command Queue structure (Figure 4). 

Step 6 – The driver polls the Driver Doorbell corresponding to the New_Process command posted in step 2. When the NIC control program notifies that the operation has been completed, the driver returns to the process. This guarantees that the process and all the other components of its group are known to all NICs in the cluster before the process starts its computation.

Process de-registration from the network device is executed on process request or automatically when the process exits, normally or not. It consists of the following simple step sequence.

 Step 1 – The driver searches for the process PID in the Process Flag Array and sets to zero the PID field in the corresponding NIC Process Table entry (Figure 4). This ensures that the process will not be scheduled any more. Even if it reaches the head of the first level Scheduling Queue before de-registration completes, zero is not a valid PID.

Step 2 – The driver posts a Delete_Process command in its Command Queue specifying name, PID and NIC Process Table position of the process to be de-registered. The NIC control program informs all NICs in the cluster that the process has been deleted, resets the related Process Table entry and removes it from the first level Scheduling Queue. Contemporaneously the driver proceeds with the other de-registration steps. 

Step 3 – The driver calculates the address of the Virtual Network Interface assigned to the process and removes its memory mapping from the process address space.

Step 4 – The driver removes the memory mapping of the HPS (Figure 3) from the process address space and re-inserts the corresponding page in its page pool.

Step 5 – The driver sets to zero the Process Flag Array element associated to the process.

A process can request the driver virtual memory address translation for a single buffer or a buffer pool. These two kinds of requests are distinguished at API level, but the driver makes no distinction between them. In both cases the process must provide its PID, the virtual address of the memory block to be translated, the number of bytes composing this block and a buffer for physical addresses. Since the driver calculates page physical addresses, the output buffer must be appropriately sized. The driver assumes the process memory block is already locked.

3.5 The NIC Control Program
The NIC control program consists of two main functions, TX and RX, executed in a ping-pong fashion. TX injects a packet into the network every time it executes, while RX associates an incoming packet with the appropriate destination. Since the QNIX NIC has two DMA engines, each function has its own DMA channel. Anyway in some cases a function can use both of them.

Before calling both TX and RX, the NIC control program always checks the Driver Command Queue. If it is not empty, the NIC control program reads the Command field of the Driver Command Queue head (Figure 7), executes the appropriate actions and sets to zero the Driver Command Queue entry. If it is the eighth consecutive command read from this Command Queue, the NIC control program updates the driver pointer to its Command Queue head in the Driver Command Queue Head field of the NIC Status structure (Figure 9). This is for preventing too many I/O bus transactions.

TX is responsible for all NIC control program scheduling operations. These are two: one choices the next process Command Queue to be read and the other choices the next packet to be sent. Both are based on a round robin politics, but packet selection is a double level scheduling. The first level is among requesting processes, the second among pending requests of the same process. All not empty NIC Process Table entries are maintained in a circular double linked list. This is used both as Command Scheduling Queue and first level Packet Scheduling Queue, maintaining two different pointer pairs for head and tail. Then each process has its own second level Packet Scheduling Queue for its pending send operations. This is a circular double linked list referred by the Scheduling Queue Head and Scheduling Queue Tail fields of the Scheduling Status structure in the related NIC Process Table entry (Figure 4). TX function executes the following steps:

Step 1 – It reads the head of the first level Scheduling Queue and checks the corresponding process Scheduling Queue. If it is empty, TX moves the process in the tail of the first level Scheduling Queue and checks the next process Scheduling Queue. TX repeats this step until it finds a process with a not empty Scheduling Queue. If such process does not exist, the function executes step 5.  

Step 2 – It reads the head of the second level Scheduling Queue and checks its Permission Flag field (Figure 5). If it is zero, TX sends a Permission_Request message to the destination NIC indicated into the Destination Node field of the Header Info structure (Figure 5), moves the send operation in the tail of the second level Scheduling Queue and checks the next send operation. TX repeats this step until it finds a send operation with non-zero Permission Flag field. If such operation does not exist, the function moves the process in the tail of the first level Scheduling Queue and goes back to step 1.

Step 3 – It writes the packet header in the NIC output FIFO. This is 16 bytes long and exhibits the following layout:

	Bytes
	Meaning

	2
	Destination NIC Coordinates

	2
	Receiver Process PID

	2
	Source NIC Coordinates

	2
	Sender Process PID

	2
	Context Tag

	4
	Packet Length in Bytes

	2
	Packet Counter


Values for Destination NIC Coordinates, Receiver Process PID, Context Tag and Packet Counter fields are copied from the Header Info structure of the second level Scheduling Queue entry (Figure 5). The Sender Process PID field value is copied from the PID field of the NIC Process Table entry (Figure 4) and the Source NIC Coordinates field value is automatically set for every send operation.

Step 4 – It accesses information pointed by the Descriptor field of the Send Info structure (Figure 5) and uses it for loading its DMA channel registers and setting the Packet Length field into the packet header. Then TX starts DMA transfer, increments the Count field value in the Header Info structure (Figure 5), subtracts the number of bytes being transferred from the Len field value and increments the Descriptor field value in the Send Info structure (Figure 5).

Step 5 – It reads the head of the Command Scheduling Queue and checks the corresponding process Command Queue. If it is empty, TX moves the process in the tail of the Command Scheduling Queue and checks the next process Command Queue. TX repeats this step until it finds a process with a not empty Command Queue. If such process does not exist, the function completes.

Step 6 – It reads the Command field of the process Command Queue head (Figure 2), executes the appropriate actions and sets to zero the Command Queue entry. If it is the eighth consecutive command read from this Command Queue, TX updates the process pointer to its Command Queue head in the Command Queue Head field of the Virtual Network Interface Status structure (Figure 3). This is for preventing too many I/O bus transactions. Then the function moves the process in the tail of the Command Scheduling Queue.

Step 7 – It checks the Len field value in the Send Info structure (Figure 5). If it is greater than zero, TX moves the send operation in the tail of the second level Scheduling Queue. Otherwise, TX polls its DMA channel status and when the data transfer completes, it DMA writes the value indicated by the Command field of the Send Info structure (Figure 5) into the associated Send Doorbell and removes the send operation from the second level Scheduling Queue.

RX function always polls the NIC input FIFO. It executes the following steps:

Step 1 – It checks the NIC input FIFO. If it is empty, RX completes. If the NIC input FIFO contains a system message, RX executes step 3. Otherwise it reads the incoming packet header and searches the receiver process Receive Table for a matching entry (Figure 6).

Step 2 – It reads the Packet Counter field value in the incoming packet header and uses it as offset in the Descriptor Map, pointed by the Descriptor Map field of the Receive Info structure (Figure 6). If the Buffer field value in the Receive Info structure (Figure 6) is null, RX uses information about the destination buffer for loading its DMA channel registers and starts DMA transfer. Otherwise it moves data from the NIC input FIFO in a local buffer pointed by the Buffer field and sets the corresponding flag in the Descriptor Map. Then RX subtracts the number of bytes being transferred from the Len field value in the Receive Info structure (Figure 6).

Step 3 – It reads the Context Tag field value in the incoming packet header and executes actions specified by its special code.

Step 4 – It checks the Len and Context field values in the Receive Info structure (Figure 6). If the first is zero and the second is not null, RX polls its DMA channel status and, when the data transfer completes, it DMA writes the value indicated by the Command field of the Receive Info structure (Figure 6) into the associated Receive Doorbell and removes the receive operation from the process Receive Table.

3.5.1 System Messages

Our communication system distinguishes two kinds of messages, user messages and system messages. The first are messages that a process sends to another process. The others are one-packet messages that a NIC control program sends to another NIC control program. System message packet header has zero in the Receiver and Sender Process PID fields and a special code in the Context Tag field. The destination NIC control program uses the Context Tag field value for deciding actions to be taken. Currently the following system messages are supported:

Permission_Request – This message is a request for a data transfer permission. Its payload contains receiver process PID, sender process PID, Context Tag, message length in bytes, first packet length in bytes and number of packets composing the message. The destination NIC control program searches the receiver process Receive Table for a matching receive operation. If it finds the related Receive Table entry (Figure 6), it executes the following steps:

Step 1 – It allocates memory for the Descriptor Map and assigns its address to the Descriptor Map field of the Receive Info structure (Figure 6). The Descriptor Map will have as many elements as the number of incoming packets. 

Step 2 – It accesses the Receive Context referred by the Context field of the Receive Info structure (Figure 6) and retrieves the address of the destination buffer page table.

Step 3 – It associates every incoming packet with one or two consecutive destination buffer descriptors and stores related offset and length in the corresponding Descriptor Map entry.

Step 4 – It replies to the sender NIC with a Permission_Reply message.

If the destination NIC control program does not find the related Receive Table entry but it has a free buffer for the incoming message in its local memory, it executes the following steps:

Step 1 – It allocates a new Receive Table entry and inserts it into the Receive Table of the receiver process.

Step 2 – It copies sender NIC coordinates, sender process PID and Context Tag, respectively, into the Source_Node, Source_PID and Context_Tag fields of the Match Info structure, invalidates the Context field and assigns a local buffer pointer to the Buffer field of the Receive Info structure (Figure 6).

Step 3 – It allocates memory for a simplified Descriptor Map and assigns its address to the Descriptor Map field of the Receive Info structure (Figure 6). This Descriptor Map associates every incoming packet with its offset into the local buffer and a flag that will be set when the corresponding packet arrives. 

Step 4 – It replies to the sender NIC with a Permission_Reply message.

If the destination NIC control program does not find the related Receive Table entry and it has no free buffers for the incoming message in its local memory, it does not reply to the request.

Permission_Reply – This message is a reply to a request for a data transfer permission. Its payload contains sender process PID, receiver process PID and Context Tag. The destination NIC control program searches the sender process Scheduling Queue for the requesting send operation and sets its Permission Flag field (Figure 5). If the Command field of the Send Info structure (Figure 5) indicates a Send_Short operation, the NIC control program executes the data transfer immediately in the following steps:

Step 1 –  It writes the packet header in the NIC output FIFO.

Step 2 –  It copies data to be transferred from the Context Region (Figure 2) referred by the Context field of the Send Info structure (Figure 5) to the NIC output FIFO.

Step 3 – It DMA writes the value indicated by the Command field of the Send Info structure (Figure 5) into the associated Send Doorbell and removes the send operation from the process Scheduling Queue.

New_Process – This message is broadcasted from the NIC where a new process is being registered to all the others. Its payload contains new process name and PID. Every destination NIC control program adds information about the new process in its Name Table (Figure 8) and replies to the sender NIC with a New_Process_Ack message.

New_Process_Ack – This message is a reply to a New_Process message. Its payload contains the new process PID. The destination NIC control program increments a counter. When such counter reaches the number of nodes in the cluster, process registration completes.
New_Group – This message is broadcasted from all NICs where a new group is being jointed to all the others. Its payload contains new group name, number of processes composing the group and jointing process PID. Every destination NIC control program adds information about the new group in its Group Table and increments the Size field value of the related entry (Figure 8) for every process jointing the new group. When this field value reaches the number of processes composing the group, it replies to the all sender NICs with a New_Group_Ack message.
New_Group_Ack – This message is a reply to a New_Group message. Its payload contains the new group name. The destination NIC control program increments a counter. When such counter reaches the number of nodes in the cluster, group registration completes.

Barrier – This message is multicasted from all NICs where a Barrier command is being executed to all NICs where the other processes of the group are allocated. Its payload contains group name, number of processes composing the group and synchronised process PID. Every destination NIC control program increments a counter for every process that reaches the synchronisation barrier. When this counter reaches the number of processes composing the group, the synchronisation completes.
Delete_Process – This message is broadcasted from the NIC where a process is being de-registered to all the others. Its payload contains process name and PID. Every destination NIC control program removes information about the process from its Name Table (Figure 8) and searches its Group Table (Figure 8) for the process name, removing it from all groups.

3.5.2 NIC Process Commands

In the following we describe the commands that currently a process can post in its Command Queue.

Send Context_Index – This command causes the NIC control program executes the following steps:

Step 1 – The NIC control program allocates a new Scheduling Queue entry from its free memory and assigns Context_Index to the Context field of the Send Info structure (Figure 5). This is the offset for calculating the address of the interested Send Context. It must be added to the Send Context List field value in the Virtual Network Interface Info structure of the related NIC Process Table entry (Figure 4). Then it sets to zero the Counter field of the Header Info structure (Figure 5).

Step 2 – The NIC control program initialises the Scheduling Queue entry with the information contained into the Send Context referred by Context_Index. 

Step 2.1 – It assigns an internal command code to the Command field of the Send Info structure (Figure 5). This puts together the Send command code and the Doorbell Flag field into the Send Context (Figure 2). This way it indicates if the process wants a completion notification. 

Step 2.2 – It copies the Len field value from the Send Context (Figure 2) to the Len field into the Send Info structure (Figure 5). 

Step 2.3 – It assigns the buffer page table address to the Descriptor field into the Send Info structure (Figure 5). This can be the address of the Context Region or a pointer to a Buffer Pool entry, depending on the Buffer Pool Index field value into the Send Context (Figure 2). In the first case Context_Index is the offset to be added to the Context Region field value in the Virtual Network Interface Info structure of the related NIC Process Table entry (Figure 4). In the second case, instead, the Buffer Pool field value in the Virtual Network Interface Info structure of the related NIC Process Table entry (Figure 4) and the Buffer Pool Index field value into the Send Context (Figure 2) must be added.
Step 2.4 – It searches its Name Table (Figure 8) for process name indicated in the Receiver Process field of the Send Context (Figure 2) and retrieves corresponding values for the Destination Node and Destination PID fields of the Header Info structure (Figure 5).

Step 2.5 – It copies the Context Tag field value from the Send Context (Figure 2) into the Context Tag field of the Header Info structure (Figure 5).

Step 3 – The NIC control program sets to zero the Permission Flag, inserts the Scheduling Queue entry into the tail of the process Scheduling Queue and sends a Permission_Request message to the destination NIC. 

Send_Short Context_Index – This is the same than the Send command, but the internal code assigned to the Command field of the Send Info structure (Figure 5) indicates high priority. These send operations do not follow the scheduling politics, they are executed on Permission_Reply message arrival. 

Broadcast Context_Index Group_Name – This command causes the NIC control program executes the following steps:
Step 1 – The NIC control program accesses the Send Context referred by Context_Index, retrieves the buffer page table and starts a DMA transfer for moving data to be broadcasted in a local buffer. 

Step 2 – The NIC control program searches its Group Table (Figure 8) for the group specified by Group_Name and, for every process composing such group, allocates a new Scheduling Queue entry and assigns information about the process to the Destination Node and Destination PID fields of its Header Info structure (Figure 5). Then the NIC control program associates a counter to its local buffer and sets it to the number of processes composing the group.

Step 3 – The NIC control program, for every Scheduling Queue entry, invalidates the Context field, sets the Descriptor field to point to its local buffer and assigns a special value to the Command field (Figure 5). This indicates that when the Len field will be zero, the counter associated to the NIC buffer must be decremented. When this counter becomes zero, the NIC control program can sets the Send Doorbell associated to the broadcast operation.

Step 4 – The NIC control program initialises the other fields of all Scheduling Queue entries as for a Send command and inserts all of them into the tail of the process Scheduling Queue.

Step 5 – The NIC control program polls DMA status and when data transfer completes, it sends a Permission_Request message to all the interested destination NICs.

Broadcast_Short Context_Index Group_Name – This is the same than the Broadcast command, but since data to be broadcasted are in the Context Region referred by Context_Index, step 1 is not executed. Of course in this case all Scheduling Queue entries are set for Send_Short operations.

Multicast Context_Index Size – This is the same than the Broadcast command, but there is no destination group. Size indicates the number of receiver processes and the NIC control program reads their name, three at a time, in consecutive process Command Queue entries. Then it searches its Name Table as for Send operations.

Multicast_Short Context_Index Size – This is the same than the Multicast command, but since data to be multicasted are in the Context Region referred by Context_Index, step 1 is not executed. Of course in this case all Scheduling Queue entries are set for Send_Short operations.

Join_Group Context_Index Group_Name Size – This command causes the NIC control program executes the following steps:

Step 1 – The NIC control program associates an internal data structure to the Join_Group operation. This stores Group_Name, Context_Index, Size and a counter set to 1. This is for counting New_Group_Ack messages. The Join_Group operation completes when this counter reaches the number of cluster nodes. In this case the NIC control program DMA sets the Doorbell associated to the Join_Group operation and referred by Context_Index.

Step 2 – The NIC control program reads its NIC Table (Figure 8) and broadcasts a New_Group message to all NICs in the cluster.

Step 3 – The NIC control program searches its Group Table (Figure 8) for the Group_Name group. If it does not exists, the NIC control program creates a new entry in its Group Table. Then it inserts the requesting process into the list pointed by the Process List field and increments the Size field value in the related Group Table entry (Figure 8). If such field value has reached Size, the NIC control program sends a New_Group_Ack message to all NICs where processes of the group are allocated.

Receive Context_Index – This command causes the NIC control program executes the following steps:

Step 1 – The NIC control program accesses the Receive Context referred by Context_Index, retrieves information about the sender process from its Name Table (Figure 8) and searches the requesting process Receive Table for a matching entry. If it exists, the NIC control program goes to step 4.

Step 2 – The NIC control program allocates a new Receive Table entry from its free memory and initialises it with the information contained into the Receive Context referred by Context_Index. 

Step 2.1 – It assigns the values used for searching the Receive Table to the Match Info structure fields (Figure 6).

Step 2.2 – It assigns an internal command code to the Command field of the Receive Info structure (Figure 6). This puts together the Receive command code and the Doorbell Flag field into the Receive Context (Figure 2). This way it indicates if the process wants a completion notification. 

Step 2.3 – It copies the Len field value from the Receive Context (Figure 2) to the Len field into the Receive Info structure and assigns Context_Index to the Context field of the Receive Info structure (Figure 6).

Step 3 – The NIC control program inserts the new Receive Table entry into the process Receive Table and completes.

Step 4 – The NIC control program allocates memory for the Descriptor Map. This will have as many elements as those of the simplified Descriptor Map pointed by the Descriptor Map field of the Receive Info structure (Figure 6).

 Step 5 – The NIC control program accesses the Receive Context referred by Context_Index and retrieves the address of the destination buffer page table. Then it associates every simplified Descriptor Map entry with one or two consecutive destination buffer descriptors and stores related offset and length in the corresponding new Descriptor Map entry.

Step 6 –The NIC control program checks if there are buffered data for the requesting process. If so, it starts a DMA channel for delivering them to the process. Then it assigns the new Descriptor Map address to the Descriptor Map field, Context_Index to the Context field and an internal command code to the Command field of the Receive Info structure (Figure 6).

Step 7 –The NIC control program checks the Len field value in the Receive Info structure (Figure 6). If it is zero the NIC control program polls its DMA channel status and, when the data transfer completes, it DMA writes the value indicated by the Command field of the Receive Info structure (Figure 6) into the associated Receive Doorbell and removes the receive operation from the process Receive Table.

Barrier Context_Index Group_Name Size – This command causes the NIC control program executes the following steps:

Step 1 – The NIC control program associates an internal data structure to the Barrier operation. This stores Group_Name, Context_Index, Size and a counter set to 1. This is for counting related Barrier messages. Then it checks if a synchronisation counter on this group was already created. If so, other processes have already reached the synchronisation barrier and the NIC control program adds this counter value to the counter in its internal data structure.  The Barrier operation completes when this counter reaches the Size value. In this case the NIC control program DMA sets the Doorbell associated to the Barrier operation and referred by Context_Index.

Step 2 – The NIC control program reads its NIC Table (Figure 8) and multicasts a Barrier message to all NICs where the other processes of the Group_Name are allocated.

3.5.3 NIC Driver Commands

In the following we describe the commands that currently the device driver can post in the Driver Command Queue. 

New_Process Proc_Name Proc_PID Group_Name Size Index – This command causes the NIC control program executes the following steps:

 Step 1 – The NIC control program associates an internal data structure to the New_Process operation. This stores Group_Name, Size, Proc_PID and two counters set to 1. These are for counting, respectively, New_Process_Ack and New_Group_Ack messages. The New_Process operation completes when both counters reach the number of cluster nodes. In this case the NIC control program DMA sets the Driver Doorbell associated to the New_Process operation.

Step 2 – The NIC control program reads its NIC Table (Figure 8) and broadcasts a New_Process and a New_Group message to all NICs in the cluster.

Step 3 – The NIC control program inserts the NIC Process Table entry referred by Index in its first level Scheduling Queue.

Step 4 – The NIC control program inserts information about the new process in its Name Table (Figure 8).

Step 5 – The NIC control program searches its Group Table (Figure 8) for the Group_Name group. If it does not exists, the NIC control program creates a new entry in its Group Table. Then it inserts the requesting process into the list pointed by the Process List field and increments the Size field value in the related Group Table entry (Figure 8). If such field value has reached Size, the NIC control program sends a New_Group_Ack message to all NICs where processes of the group are allocated.

Delete_Process Proc_Name Proc_PID Index – This command causes the NIC control program executes the following steps:

Step 1 – The NIC control program reads its NIC Table (Figure 8) and broadcasts a Delete_Process message to all NICs in the cluster.

Step 3 – The NIC control program resets the NIC Process Table entry referred by Index and removes it from its first level Scheduling Queue.

Step 4 – The NIC control program searches its Name Table (Figure 8) for Proc_Name and removes the related entry.

Step 5 – The NIC control program searches every Process List in its Group Table (Figure 8) for Proc_Name, removes the related node and decrements the Size field value in the corresponding Group Table entry (Figure 8). If such field value becomes zero, the NIC control program removes the Group Table entry.

3.6 The QNIX API

The QNIX API is a C library providing user interface to the QNIX communication system. It is mainly targeted to high level communication library developers, but can also be directly used by application programmers. All functions return a negative number or a null pointer in case of error, but at the moment no error code is defined. Currently the QNIX API contains the following functions:

void *qx_init(int *proc_name, 

int group_name,

int group_size);

Every process in a parallel application must call this function as its first action. This way the process is registered to the network device. The function completes when all processing composing the parallel application have been registered to their corresponding network device, that is when the parallel application has been registered in the cluster.

Here proc_name is a two-element array containing the pair (AI, PI) defined in section 3.2, group_name is AI and group_size is the number of processes composing the parallel application. This function returns the pointer to the HPS (Figure 3).

int qx_buffer_lock(char *buffer, 





long buffer_size);

This function simply calls the Linux mlock() system call. It pins down the memory buffer pointed by buffer. Here buffer_size is the length in bytes of the memory buffer to be locked.

int qx_buffer_unlock(char *buffer, 





  long buffer_size);

This function simply calls the Linux munlock() system call. It unlocks the memory buffer pointed by buffer. Here buffer_size is the length in bytes of the memory buffer to be unlocked.

int qx_buffer_pool(int pool_size);

This function allocates a page aligned memory block of pool_size pages, locks it, translates page virtual addresses and writes physical addresses into the Buffer_Pool structure of the process Virtual Network Interface (Figure 2). This memory block can be used as a pre-locked and memory translated buffer pool. It is locked for the whole process lifetime and its size is limited to 8 MB.

int qx_buffer_translate(char *buffer,






long buffer_size,






unsigned long *phys_addr);

This function translates virtual addresses of the pages composing the buffer pointed by buffer and writes the related physical addresses in the phys_addr array. This has one element more than the number of pages composing the buffer. Such added element stores the number of buffer bytes in the first and last page. Here buffer_size is the buffer length in bytes and cannot be grater than 2 MB.

int qx_send_context(int *receiver_proc_name, 





 int context_tag,





 int doorbell_flag,





 int size,





 long len,





 int buffer_pool_index,





 unsigned long *context_reg);

This function searches for the first available Send Context in the process Send Context List (Figure 2) and assigns its argument values to the corresponding Context fields. It returns the Send Context index in the Send Context List array. Here receiver_proc_name is a two-element array containing the pair (AI, PI) (see section 3.2) for the receiver process, context_tag is the message tag, doorbell_flag indicates if the process wants to be notified on send completion, size is message length in packets, len is the message length in bytes, buffer_pool_index is an index in the Buffer Pool (Figure 2) or -1 if the Buffer Pool is not used, context_reg is the pointer to the page table or data to be copied into the corresponding Context Region (Figure 2), or NULL if the Buffer Pool is used.

int qx_recv_context(int *sender_proc_name, 





 int context_tag,





 int doorbell_flag,





 int size,





 long len,





 int buffer_pool_index,





 unsigned long *context_reg);

This function searches for the first available Receive Context in the process Receive Context List (Figure 2) and assigns its argument values to the corresponding Context fields. It returns the Receive Context index in the Recieve Context List array. Here sender_proc_name is a two-element array containing the pair (AI, PI) (see section 3.2) for the sender process, context_tag is the message tag, doorbell_flag indicates if the process wants to be notified on receive completion, size is destination buffer length in pages, len is the destination buffer length in bytes, buffer_pool_index is an index in the Buffer Pool (Figure 2) or -1 if the Buffer Pool is not used, context_reg is the pointer to the page table to be copied into the corresponding Context Region (Figure 2), or NULL if the Buffer Pool is used.
int qx_send(int context_index);

This function posts a Send command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Send operation.
int qx_send_short(int context_index);

This function posts a Send_Short command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Send_Short operation.
int qx_broadcast(int context_index,




   int group_name);

This function posts a Broadcast command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Broadcast operation and group_name is the identifier of the broadcast target process group.
int qx_broadcast_short(int context_index,




   
    int group_name);

This function posts a Broadcast_Short command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Broadcast_Short operation and group_name is the identifier of the broadcast target process group.
int qx_multicast(int context_index,




   int size,




   int **recv_proc_name_list);

This function posts a Multicast command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Multicast operation, size is the number of receiver processes and recv_proc_name_list is the pointer to a list of two-element arrays containing the pairs (AI, PI) (see section 3.2) for the receiver processes.
int qx_multicast_short(int context_index,




   
    int size,




   
    int **recv_proc_name_list);

This function posts a Multicast_Short command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Multicast_Short operation, size is the number of receiver processes and recv_proc_name_list is the pointer to a list of two-element arrays containing the pairs (AI, PI) (see section 3.2) for the receiver processes.

int qx_receive(int context_index);
This function posts a Receive command in the process Command Queue. Here context_index is the Receive Context List index for the Receive Context associated to the Receive operation.
int qx_join_group(int context_index,




    int group_name,




    int group_size);
This function posts a Join_Group command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Join_Group operation, group_name is the identifier of new process group and group_size is the number of processes composing the new group.
int qx_barrier(int context_index,



  
 int group_name,




 int group_size);

This function posts a Barrier command in the process Command Queue. Here context_index is the Send Context List index for the Send Context associated to the Barrier operation, group_name is the identifier of synchronising process group and group_size is the number of processes composing such group.
int qx_poll_for_send(int context_index);

This function makes the process poll its Send_Doorbell (Figure 3) associated to the Send Context referred by context_index. When the corresponding send operation completes, this functions sets the Send_Doorbell to Free.

int qx_poll_for_receive(int context_index);

This function makes the process poll its Receive_Doorbell (Figure 3) associated to the Receive Context referred by context_index. When the corresponding receive operation completes, this functions sets the Receive_Doorbell to Free.
int qx_end(int *proc_name);

This function de-registers the process from the network device. Here proc_name is a two-element array containing the pair (AI, PI) (see section 3.2) for the process to be de-registered.
3.7 Work in Progress and Future Extensions
The QNIX communication system is still an on-going research project, so currently we are working for improving some features and adding new ones. Moreover some extensions are planned for the feature. At the moment we are dealing with the following open issues:

Distributed Multicast/Broadcast – The current multicast/broadcast implementation is based on multiple send operations from a local buffer of the sender NIC to all receivers. This prevents data to be sent cross the I/O bus more than once, but is not optimal about network traffic. We are studying a distributed algorithm, to be implementing in the NIC control program, for improving these operations. Such algorithm can also improve system multicast/broadcast performance and, thus, Barrier and Join_Group operation performance. Moreover it can speed-up process registration.

Different Short Message Flow Control  – Currently we have a unique flow control algorithm for all messages. Short messages have high priority, that is they are sent as soon as the data transfer permission arrives, but they must wait for permission. It seems reasonable that the destination NIC generally has sufficient room for a short message, so we are evaluating the possibility of sending it immediately and, eventually, requesting an acknowledgment from the receiver. Anyway experimentation is needed for helping in decision.

No Limited Message Size – Currently message size is limited by Context Region size (Figure 2). Larger messages must be sent with multiple operations. This introduces send and receive overhead because multiple Contexts must be instanced for a single data transfer. For removing such constraint processes could use Context Regions as circular arrays. However this solution drawback is the necessity of synchronization between NIC and process.

NIC Memory Management Optimization  – At the moment the QNIX communication system uses no optimization technique for memory management. Large data structures, such as Virtual Network Interfaces (Figure 2), are statically allocated and probably a significant part of them will be not used. Dynamic memory management is very simple: at the beginning there is one large memory block and then the NIC control program maintains a list of free memory blocks. This is not efficient because of memory fragmentation.

Explicit Gather/Scatter/Reduce – Currently the QNIX communication system does not support explicitly these collective operations, so they must be realised as a sequence of simpler operations at API level. This is not enough efficient for MPI collective communication function support. Anyway this extension can be added with a little effort because collective operations can be implemented as a sequence of simpler operations at NIC control program level.

Error Management – At the moment we have no error management in our communication system. Anyway the idea is to introduce error condition detection and simply to signal abnormal situations to higher level layers.

For the future we are planning some substantial extensions of the QNIX communication system. First we would like to remove the constraint that a parallel application can have at most one process on every cluster node. The main reason for such limitation is that currently every process is associated to the integer identifier of its cluster node. We expect that an external naming system can eliminate this problem. Of course processes on the same node will communicate through the memory bus, so the QNIX API function implementation must be extended for transparently handling this situation. This work can be the first step toward the SMP extension of the QNIX communication system. 

Other future extensions could be support for client/server and multi-threaded applications and the introduction of fault-tolerance features. This will make our communication system highly competitive with current commercial user-level systems.  
Chapter 4

First Experimental Results

In this chapter we report the first experimental results obtained by the current QNIX communication system implementation. Since the QNIX network interface card is not yet available, we have implemented the NIC control program of our communication system on the 64-bit PCI IQ80303K card. This is the evaluation board of the Intel 80303 I/O processor that will be mounted on the QNIX network interface. Behaviour of the other network interface components has been simulated. For this reason we refer to this first implementation as preliminary.

Of course the QNIX communication system has been tested on a single node platform, so that we have real measurement only about data transfer from host to NIC and vice versa. This is not a problem for evaluating our communication system because the impact of missing components (router and links) is quite deterministic. Simulation has established about 0.2 µs latency on a NIC-to-NIC data transfer, so one-way latency of a data transfer can be obtained adding this value to the latency measured both for host-to-NIC and NIC-to-host data transfers. About bandwidth, the QNIX network interface will have full duplex bi-directional 2.5 Gb/s serial links, but the bandwidth for user message payload has an expected peak of 200 MB/s. This is because the on board ECC unit appends a control byte to each flit (8 bytes), and an 8-to-10 code is used in bit serialization with 9/10 expected efficiency factor. So we have to compare the bandwidth achieved by the QNIX communication system with such peak value.

Anyway at the moment experimentation with the our communication system is still in progress. Here we present the first available results. They have been achieved in a simplified situation, where no load effect is considered, so they could be optimistic.

This chapter is structured as follows. Section 4.1 describes the hardware and software platform used for implementation and experimentation of the QNIX communication system. Section 4.2 discusses current implementation of the QNIX communication system and gives a first experimental evaluation. 

4.1 Development Platform 

The QNIX communication system implementation and experimentation described here have been realised on a Dell PowerEdge 1550 system running the Linux 2.4.2 operating system and equipped with the 64-bit PCI IQ80303K card. This is the evaluation board of the Intel 80303 I/O processor.

The Dell PowerEdge 1550 system has the following features: 1 GHz Intel Pentium III, 1 GB RAM, 32 KB first level cache (16 KB instruction cache and 16 KB two-way write-back data cache), 256 KB second level cache, 133 MHz front side memory bus and 64-bit 66 MHz PCI bus with write-combining support. 

The Intel 80303 I/O processor is designed for being used as the main component of a high performance, PCI based intelligent I/O subsystem. It is a 100 MHz processor 80960JTCore able to execute one instruction per clock cycle. The IQ80303K evaluation board has the following features: 64 MB of 64-bit SDRAM (but it can support up to 512 MB), 16 KB two-way set-associative instruction cache, 4 KB direct-mapped data cache, 1 KB internal data RAM, 100 MHz memory bus, 64-bit 66 MHz PCI interface, address translation unit connecting internal and PCI buses, DMA controller with two independent channels, direct addressing to/from the PCI bus, unaligned transfers supported in hardware. Moreover additional features for development purpose are available, among them: serial console port based on 16C550 UART, JTAG header, general purpose I/O header and 2 MB Flash ROM containing the MON960 monitor code.

A number of software development tools are available for the IQ80303K platform. We have used the Intel CTOOLS development toolset. It includes advanced C/C++ compilers, assembler, linker and utilities for execution profiling. To establish serial or PCI communication with the IQ80303K evaluation board, we have used the GDB960 debugger. Interface between this debugger and MON960 is provided by the MON960 Host Debugger Interface, while communication between them is provided by the SPI610 JTAG Emulation System. This is a Spectrum Digital product and represents the default communication link between the host development environment and the evaluation board. It is based on the 80303 I/O processor JTAG interface.

4.2 Implementation and Evaluation
The current QNIX communication system implementation can manage up to 64 registered processes on the network device. Every process can have 32 pending send and 32 pending receive operations. The maximum message size is 2 MB, larger messages must be sent with multiple operations. The maximum Buffer Pool size is 8 MB. 

The reason for limiting to 64 the number of processes that contemporary can use the network device is that the IQ80303K has only 64 MB of local memory. Every Virtual Network Interface takes 516 KB (512 KB for the Context Regions and 4KB for all the other components), so 64 Virtual Network Interfaces take about half NIC memory. The remaining, except few KB for static NSS and NIC control program code, is left for buffering and dynamic NSS. This is for guaranteeing that a buffer for incoming data is very probably available also in heavy load situations.

Among design issues discussed in section 3.2, data transfer and address translation need some considerations here. 

About data transfer mode from host to NIC, on our platform it seems that programmed I/O is more convenient than DMA for data transfers up to 1024 bytes, so we fix such value as the maximum size for short messages. For programmed I/O with write-combining we have found that PCI bandwidth becomes stable around 120 MB/s for packet sizes from 128 bytes onwards. DMA transfers, instead, reach a sustained PCI bandwidth of 285 MB/s for packet sizes ( 4 KB. 

About address translation, the idea of using a pre-locked and memory translated buffer pool seems to make sense only for buffer sizes < 4 KB. When a process requests buffer lock and translation on the fly, the time spent in system calls is negligible compared to the time spent for writing the page table in NIC memory. Thus we have measured on a side the cost of programmed I/O page table transfer and on the other the cost of a memory copy. On the Dell machine we have observed an average value of 700 MB/s for memory bandwidth, that is a 4KB memory copy costs (5.5 µs. To lock and translate a memory page we have measured (1.5 µs and (1µs is necessary for writing the related Descriptor (16 bytes) in the Context Region. So the whole operation costs (2.5 µs. When the buffer size increases, this performance difference becomes more significant. This is because for every 4KB to be copied only 16 bytes must be cross the I/O bus. Moreover when the number of Descriptors increases, the PCI performance reaches its sustained programmed I/O performance. System call overhead is no significant when the number of pages to be locked and translated becomes greater than 2. For a 2MB buffer we have found that a memory copy costs (2857µs versus (64µs of the locking, translating and Descriptor transfer into the corresponding Context Region. When the buffer size is less than 4KB, instead, with lock and translating on the fly, we have to pay always the whole cost of (2.5 µs, while the memory copy is paid only for the real buffer size. For a 2 KB buffer the memory copy costs (2.8 µs, for a 1.5 KB buffer (2 µs and for 1 KB buffer (1.4 µs.

Our first evaluation tests on the QNIX communication system showed about 3 µs one-way latency for zero-payload packets and 180 MB/s bandwidth for message sizes ( 4 KB. Here with one-way latency we means the time from the sender process posts the Send command in its Command Queue until the destination NIC control program sets the corresponding Receive Doorbell for the receive process. This value has been calculated adding the cost for posting the Send command ((1 µs), the cost for the source NIC control program to prepare packet header ((0.5 µs), the estimated NIC-to-NIC latency ((0.2 µs) and the cost for the destination NIC control program to DMA set the corresponding Receive Doorbell for the receiver process ((1 µs). Asymptotic payload bandwidth, instead, is the user payload injected into the network per time unit. We have obtained 180 MB/s measuring the bandwidth that is wasted because of the time that the NIC control program spent in its internal operation. Considering that the expected peak bandwidth for the QNIX network interface is about 200 MB/s, our communication system is able to deliver user applications up to the 90% of the available bandwidth.
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Figure 5. Scheduling Queue Entry
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Figure 4. NIC Process Table
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Figure 3. Host Process Structures
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Figure 2. Virtual Network Interface
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