Distributed Algorithms

PART I
SYNCHRONOUS SYSTEMS

Distributed system = graph
- Node = processors (or processes)
- Edge = channel

Directed graph $G=(V,E)$
- $n = |V|$, number of nodes in the graph
- For $i \in V$
 - Out-nbrs, set of nodes j s.t. $(i,j) \in E$
 - In-nbrs, set of nodes j s.t. $(j,i) \in E$

Process
- For each $i \in V$, we have a process i
 - States, a set (not necessarily finite) of states
 - Start, a non-empty subset of states
 - Msgs, a message generation function
 - Trans, a state transition function

Message generation
- function : states x out-nbrs -> $M \cup \{\bot\}$
- M is the set of all possible messages

Transition function
- function : states x Vector($M \cup \{\bot\}$) x In-nbrs -> states

Channel and executions
- For each $(i,j) \in E$, we have a channel(i,j)
 - It is just a location that, at any time, can hold at most one message from M or can be empty

Execution
- All processes in arbitrary start states
- Rounds: all processes in lock-step repeatedly do
 - Apply the message generation function and put the outgoing messages in the appropriate channel
 - Apply the state transition function to the current state and the vector of incoming messages; remove messages from the channel

Halting
- When the execution halts?
 - There isn’t a specific mechanism

 - No messages are generated and the state transition is a self-loop

 For those accustomed with automata
 - Halting states are not accepting states
 - Halting states serve only to halt the process
 - What is computed must be determined in other ways (e.g., value of variable)

Failures
- Process failures
 - Stopping, at any time
 - Even somewhere in the middle of messages send step
 - Some messages are sent, some are not sent
 - Byzantine failures
 - Arbitrary behavior
 - Malicious

- Channel failures
 - Loss of messages
 - The channel does not record the messages
• State variables
 – Some variables are designated as “input”
 – Some are designated as “output”

• Different input states allow to have different inputs
 – This is why we have multiple start states

• Output variables are write-once variables
 – That is, it is not possible to change the output

• Overall states
 – System state = state of all processes
 – Channels state = state (content) of each channel

• Formally an execution is a sequence
 \[C_0, M_1, N_1, C_1, M_2, N_2, C_2, \ldots \]
 where
 \[C_r \text{ are system states} \]
 \[M_r, N_r \text{ are messages sent and received} \]
 – might be different because of channel failures
 \[r \text{ is the round} \]

• Indistinguishable executions
 – Two executions \(\alpha \) and \(\alpha' \) can be indistinguishable to process \(i \)
 • Process \(i \) has the same sequence of states, the same sequence of incoming and outgoing messages
 \[\alpha \approx_i \alpha' \]

• If two executions \(\alpha \) and \(\alpha' \) are indistinguishable to \(p_i \)
 – Then \(p_i \) makes same sequence of steps
 • same decisions (output) in \(\alpha \) and \(\alpha' \)

• Invariant assertions
 – A property of the system state true in all executions
 – Round numbers can be used in the assertions
 • Can be proven by induction
 – True for round \(r=0 \)
 – Assume true for round \(r \), prove for round \(r+1 \)

• Simulations
 – Show that an algorithm A “implements” an algorithm B (same input/output relation)
 – Simulation relation

• Time complexity
 – Number of rounds

• Communication complexity
 – Number of messages sent
 – Sometimes, number of bits sent

EADEAR ELECTION IN A RING
Leader election in a ring

- Leader election
 - One processor eventually outputs “I am the leader”
 - Might also require other processors to output “I am not the leader”

- G is a ring of n processors
 - Numbered 1 through n: p_1, p_2, \ldots, p_n
 - Ring can be unidirectional or bidirectional
 - n can be known or unknown to the processors
 - Processors can be either totally identical, or can be distinguished by a unique identifier

LCR algorithm

- LCR: LeLann, Chang, Roberts [1979]
- Assumes
 - Unidirectional communication
 - Processors have UIDs
 - Only leader performs an output
 - Size n unknown

Messages $M = \text{UIDs}$

- states:
 - $uid \in \text{UIDs}$
 - $send \in \text{UIDs} \cup \{\bot\}$
 - $status \in \{\bot, \text{leader}\}$

Message generation function

- $msgs_i$: send value of $send$ to process $i+1$ (mod n)

Transition function $trans_i$:

\[
\text{if incoming message is } v, \text{ a UID, then} \quad \text{case}
\]

\[
\begin{align*}
 &v > uid: \quad \text{send } := v \\
 &v = uid: \quad status = \text{leader} \\
 &v < uid: \quad \text{do nothing}
\end{align*}
\]

LCR algorithm: execution

<table>
<thead>
<tr>
<th>UID</th>
<th>Send</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>578</td>
<td>578</td>
<td>I</td>
</tr>
<tr>
<td>287</td>
<td>287</td>
<td>I</td>
</tr>
<tr>
<td>399</td>
<td>399</td>
<td>I</td>
</tr>
<tr>
<td>156</td>
<td>156</td>
<td>I</td>
</tr>
<tr>
<td>899</td>
<td>899</td>
<td>I</td>
</tr>
<tr>
<td>626</td>
<td>626</td>
<td>I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UID</th>
<th>Send</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>578</td>
<td>578</td>
<td>I</td>
</tr>
<tr>
<td>287</td>
<td>578</td>
<td>I</td>
</tr>
<tr>
<td>399</td>
<td>399</td>
<td>I</td>
</tr>
<tr>
<td>156</td>
<td>899</td>
<td>I</td>
</tr>
<tr>
<td>899</td>
<td>899</td>
<td>I</td>
</tr>
<tr>
<td>626</td>
<td>626</td>
<td>I</td>
</tr>
</tbody>
</table>
\section*{LCR algorithm: execution}

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{lcra1}
\caption{LCR algorithm: execution}
\end{figure}

\section*{LCR algorithm: final state}

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{lcra2}
\caption{LCR algorithm: final state}
\end{figure}

\section*{Formal proof}

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{lcra3}
\caption{Formal proof}
\end{figure}

\section*{Formal proof}

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{lcra4}
\caption{Formal proof}
\end{figure}

\begin{Lemma}
Let i_{max} be the index of leader
\begin{itemize}
\item uid_{max} be UID of process i_{max}
\end{itemize}
\end{Lemma}

\begin{Invar}
for $0 \leq n-1$
\begin{itemize}
\item after r rounds, $send_{i_{\text{max}}} = uid_{\text{max}}$
\end{itemize}
\end{Invar}

\begin{Proof}
base: $r=0$: $send_{i_{\text{max}}}=uid_{\text{max}}$ true (initial values)
- induction: assume true for r, prove for $r+1$:
 - true for r, means $send_{i_{\text{max}}}=uid_{\text{max}}$
 - this implies that process $i_{\text{max}}+r$ sends uid_{max} in
 round r and thus process $i_{\text{max}}+r+1$ receives uid_{max}
 - By the transition function process $i_{\text{max}}+r+1$ updates
 its $send$ variable to uid_{max}
\end{Proof}
Lemma 2: No process other than i_{max} outputs “leader”.

- Define $[ij] = \{i,i+1,...,j-1\}$
 - start at i and move along ring direction to j
- Invariant 2: For any ij after any r rounds, if $i \neq i_{\text{max}}$ and $j \in [i_{\text{max}}]$ then send $j \neq \text{uid}_i$.

Informally: no uid variable “can get through” the processor with max uid

Proof:

(base) $r=0$, send $i-1$ = uid, assertion true because UIDs are unique ($\text{uid}_i \neq \text{uid}_{i-1}$).

(Induction) Assume true for r. Prove for $r+1$.

- fix ij (notice that in i_{max})
 - true for i means, send i = uid; for all $k \leq i_{\text{max}}$ and thus also for $k+1$ (unless $j = i_{\text{max}}$ in which case we easily have send $j = \text{uid}_{i_{\text{max}}} = \text{uid}_{j}$)
 - So send $j \neq \text{uid}_i$.
 - Since send at end of round $r+1$ can be equal to uid, only if process j receives uid, and any $\geq \text{uid}_i$ (and $\text{uid}_i > \text{uid}_j$). But this is impossible because at the end of round r send $j \neq \text{uid}_i$.

Theorem: LCR solves the leader election problem

- The algorithm we have seen elects a leader
 - but only outputs “leader” for the leader
 - no output for other processes

- We can transform it into an algorithm that
 - outputs “leader” for the leader
 - outputs “non-leader” for other processes

Exercise
- design such a transformation
HS algorithm

- HS: Hirschberg, Sinclair [1980]

 - Same setting as before with bidirectional communication
 - better communication complexity: $O(n \log n)$

- Phases $k=0,1,2,...$
 - Each process sends out its UID (probe)
 - in both directions
 - the probe is intended to travel at a distance 2^k and then come back
 - other processors in the path let the probe pass only if their UID is smaller

Phase 0: distance $2^0=1$

Phase 1: distance $2^1=2$

Phase 2: distance $2^2=4$

Phase 3: distance $2^3=8$

Message complexity analysis

- Messages sent in first Phase ...
 - at most 4 messages sent per processors
 - n processors send messages

- In generic phase k
 - At most 4×2^k messages per processor
 - How many processors send messages?
 - In phase k, a processor send messages if it is not “defeated” in phase $k-1$
 - Within any group of $2^{k-1}+1$ only one goes to the next phase
 - Hence at most $\lfloor n/(2^{k-1}+1) \rfloor$
 - $4 \times 2^k \times \lfloor n/(2^{k-1}+1) \rfloor \leq 8n$
• How many phases?
 – 1+[log n]

• Total complexity: $8n(1+\log n) = O(n \log n)$

• Time complexity
 – phase k takes $2^k = 2^{k+1}$ rounds
 – last phase takes n rounds
 – $2^{k+1}+2^k + \ldots + 2^k + n = O(n)$

• Exercise: write the algorithm
 – states, start, msg, trans,

Complexity analysis

Breaking symmetry

• Leader election is a form of “symmetry breaking”
 – UIDs allow us to distinguish processors
 – Without UIDs?

Theorem: Let A be a bidirectional ring of size n. If all processors of A are identical then A cannot solve the leader election problem

Proof (informal): all processors are identical, they all do the same (either all leaders, or no leaders).

Comparison based

• Comparison of UIDs allow us to break symmetry

• Comparison-based algorithms
 – only perform comparison of UIDs: $\leq, >, =$
 – clearly, UIDs can also be stored, copied, sent

• Using comparison-based algorithms we still have some “symmetry”
 – Key idea: $3 < 7$ is the same as $5 < 7$... in this situation 5 and 3 are “equivalent”

• Can use to prove a lower bound on messages

Comparison based

• Order equivalence
 – $U = (u_1, u_2, \ldots, u_k)$ and $V = (v_1, v_2, \ldots, v_k)$
 – are order equivalent if $\forall 1 \leq i \leq k$: $u_i \leq v_j$ iff $v_i \leq v_j$

• Examples: $(5,3,7,0)$, $(4,2,6,1)$ and $(5,3,6,1)$

• Some definition
 – active round: at least one message is sent
 – k-neighborhood of i: $2k+1$ processors around i (with i in the middle), $k < n/2$

Comparison based

Lemma 1: Let A be a comparison-based algorithm. Size of ring is n, let $k = 0 \leq k < n/2$. Let i/j be two processes with order-equivalent sequences of UIDs in their k-neighborhoods.

Then at any time after at most k active rounds, i and j are in corresponding states with respect to UID sequences in their k-neighborhoods.

Example: 3-neighborhood of i: $(1,6,3,8,4,10,7)$
3-neighborhood of j: $(4,10,7,12,9,13,11)$. The lemma says that i and j are in corresponding states as long as no more than 3 active rounds have occurred.
Distributed Algorithms

Theorem 1

Case when

We omit the proof.

Inductive step: Assume true for \(r'-1 \). Fix \(r \) for which \(i \) and \(j \) have order-equivalent sequences of UIDs in their \(k \)-neighborhood, and suppose that the first \(r \) rounds include at most \(k \) active rounds.

Assume \(i \) or \(j \) receive a msg at round \(r \). Round \(r \) is active. Hence first \(r-1 \) rounds include at least \(k-1 \) active rounds.

Proof (ctnd):

- \(i-1 \) sends msg to \(i \), \(i+1 \) does not.
- \(i-1 \) and \(j-1 \) are in corresponding states after \(r-1 \) rounds. Hence \(j-1 \) also sends a msg to \(j \) at round \(r \).
- Similarly, \(j+1 \) does not send a msg to \(j \) at round \(r \).
- The msg sent by \(j+1 \) corresponds to the msg sent by \(i+1 \) with respect to the \((k-1) \)-neighborhoods of \(i-1 \) and \(j-1 \), and consequently also with respect to the \(k \)-neighborhoods of \(i \) and \(j \).
- Since \(i \) and \(j \) are in corresponding states after \(r-1 \) rounds and receive corresponding messages, they remain in corresponding states.
- Other cases are similar.

What the lemma says?

- High order-equivalence of UIDs require many active rounds to break symmetry.

To prove the lower bound we need to find rings with many order-equivalent neighborhoods:

- Fix \(c, 0 \leq c \leq 1 \)
- A ring \(R \) is \(c \)-symmetric if for every \(\lambda, n^\lambda \leq \lambda \leq n \), and for every segment \(S \) of length \(\lambda \) there are at least \(\lceil cn/\lambda \rceil \) segments in \(R \) that are order equivalent to \(S \), counting \(S \) itself.

Theorem 1: There exists a constant \(c \) such that for all \(n \), there is a \(c \)-symmetric ring of size \(n \).

- We omit the proof.

However we show \(\frac{1}{2} \)-symmetric rings for the case when \(n \) is a power of 2

Bit-reversal rings

- UID of \(p \) is the inverse of binary representation of \(i \)

- \(i = 0, 1, 2, \ldots, n-1 \)
Lemma 2: Let A be a comparison-based leader election algorithm, for a c-symmetric ring of size n. Let k integer s.t. \(n^2 \leq 2k+1 \leq n \) and \(\lfloor cn/(2k+1) \rfloor \geq 2 \). Then A has more than \(k \) active rounds.

Proof: By contradiction. Assume that A elects leader, say i, in at most \(k \) active rounds. Let S be the \(k \)-neighborhood of i. S has length \(2k+1 \). Choose \(\lambda = 2k+1 \).

Since ring is \(c \)-symmetric, there are at least \(\lfloor cn/(2k+1) \rfloor \geq 2 \) segments order equivalent to S. Thus, at least 1 other segment order equivalent to S. Let \(i \) be the midpoint of such a segment. Process \(j \) and \(j \), by Lemma 1, remain in corresponding states. Since \(i \) becomes leader, also \(j \) becomes leader.

Exercise: prove the above

Theorem 2: For any comparison-based algorithm there is an execution in which \(\Omega(n \log n) \) messages are sent to elect a leader.

Proof: Fix \(c \) satisfying Theorem 1 and construct a \(c \)-symmetric ring \(R \) of size \(n \).

Define \(k = \lceil (cn-2)/4 \rceil \). Then \(n^2 \leq 2k+1 \leq n \) and \(\lfloor cn/(2k+1) \rfloor \geq 2 \) (for \(n \) large enough).

By Lemma 2 there are at least \(k+1 \) active rounds. Consider \(n^k \) active round, \(n^2 \leq r \leq k+1 \). Round is active, some process i sends a message. Let S be the \((r-1) \)-neighborhood of i. R is \(c \)-symmetric, at least \(\lfloor cn/(2r-1) \rfloor \) segments of R are order equivalent to S. By Lemma 1, just before round \(r \), the midpoints of those segments are in corresponding states. Thus they all send messages.

Proof (cntd):
Let \(r_1 = \lfloor n^2 \rfloor + 1 \) and \(r_2 = k+1 = \lfloor cn-2)/4 \rfloor + 1 \).

Total number of messages:
\[
\sum_{p_i \in R} [cn/(2r-1)] \geq \sum_{r_1 \leq r \leq r_2} [cn/(2r-1)] = \Omega(n)\sum_{r_1 \leq r \leq r_2} 1/r - \Omega(n) \]

\(\Omega(n) = \Omega(n \log(n)) \)

Other algorithms
- UIDs
- Comparisons of UIDs with round numbers

Assumes n known

Use absence of msgs to convey information

Phases: 1,2,3...
- Each of n rounds
- In phase k only UID=k can travel
- Phase k consists of rounds k=1...n
- If a process has not yet received any msg by phase \((k-1)n+1 \) and its own UID is k, sends a msg ("k leader") around the ring
TimeSlice algorithm

- Need comparisons between UIDs and round numbers
 - phases of \(n \) rounds
 - in phase \(k \) only the UID = \(k \) can travel around the ring
- \(O(n) \) msgs
 - actually, exactly \(n \) msgs
- \(O(m \times n) \) rounds
 - where \(m = \text{min UIDs} \)
- Exercise: design an algorithm for \(n \) unknown
 - Hint: Each process sends its own UID. Messages travel at different speeds; exploit overtaking.

Leader election in general graphs

- We assume
 - unique identifiers (from totally ordered space)
 - a connected directed graph \(G = (V, E) \)
- FloodMax algorithm (informal)
 - Process keep track of max UID seen
 - At each round, every process \(p_i \)
 - sends \(\text{max-uid} \),
 - updates \(\text{max-uid} \) according to received messages
 - After \(\text{diam} \) rounds the leader is elected
 - the leader is \(\text{max-uid} \) (which is the same for all \(i \))

Synchronous algorithms

BFS, Shortest Path (,MST)

- Directed graph \(G = (V, E) \) and a source node \(s \)
 - processes have UIDs
 - network topology unknown
 - \(n \) unknown
- Visit the graph breadth-first
 - breadth-first directed spanning tree of \(G \)
 - spanning tree rooted at source node \(s \)
 - nodes at distance \(d \) from \(s \), appear at level \(d \) of the tree
- Broadcast
 - convenient structure to convey broadcast messages

BFS

- The algorithm produces a BFS tree
- Formally we could write an invariant
 - after every round \(r \), every node at distance \(d \) from \(s \), \(1 \leq d \leq r \), has its parent pointer defined; moreover such a pointer points to a node at distance \(d-1 \) from \(s \).
- Complexity
 - \(O(\text{diam}) \) time
 - \(O(|E|) \) messages
 - exact number can be reduced by not sending search msgs to nodes from which such a message has arrived - still \(O(|E|) \)

BFS
BFS and broadcast

• Can broadcast a message during construction
 – message sent by the source
 – piggybacked on search messages

• Broadcast after construction
 – need to know “child” pointers
 – the algorithm only constructs “parent” pointers

• If G is bidirectional
 – easy to let the parent know its children
 • enough that the children send a message

BFS and child pointers

• What if G is directed?
 – harder

• Once a node u knows its parent
 – uses a new instance of the algorithm
 – source is u, destination is sender of search message
 – response to search message
 • “parent” or “not parent”
 – the sender of search message gets the message (it’s a broadcast)

• Many instances of the algorithm in parallel

Complexity analysis

• How processes know that the tree has been built?

• Convergecast
 – once a node has received
 • response to all its search messages
 • notification of completion from its children
 – sends a notification of completion to its parent

• Analysis:
 – bidirectional: O(diam) time, O(|E|) msgs
 – unidirectional: O(diam^2) time, O(diam^2|E|) msgs

BFS applications

• Broadcast
 – send messages on the tree
 • O(diam) time, O(n) messages

• Global computation
 – convergecast
 • each node sends its own value to the root

• Electing a leader
 – all processes initiate BFS in parallel and broadcast their UID

• Computing the diameter
 – each process i initiates BFS, and with a convergecast computes
 the depth of its tree, depth_i
 – With an extra broadcast on the tree, depth_i is sent to all processes
 – diameter is max of depth_i

Distributed Shortest Path

• Input: directed graph G=(V,E)
 – edge weights: w(i,j), for each (i,j)∈E
 – source node s

• Output: in each node
 – pointer to parent node in shortest path from s to d

• Assume
 – n = |G| is known (or at least an upper bound)
 – both i and j know w(i,j)
Bellman-Ford

- Each node \(u \) keeps track of
 - \(\text{dist}_u \)
 - shortest distance from \(s \) to \(u \), so far
 - initially, \(\text{dist}_s = 0 \) and \(\text{dist}_u = \infty \) for \(u \neq s \)
 - parent
 - pointer to parent on path with overall weight = \(\text{dist}_u \)

- At each round
 - each process sends its \(\text{dist} \) to all its neighbors
 - When \(i \) receives \(\text{dist}_j \) from \(j \)
 - "relaxation" step
 - \(\text{dist}_i = \min (\text{dist}_i, \text{dist}_j + w(i,j)) \)

- After \(n-1 \) rounds shortest paths are found

Minimum Spanning Tree

... will see the asynchronous version!

- To explain the asynchronous version we will first see a synchronous version
- Better to do one after another

Consensus

- The problem
 - processes have to agree on a value
- Easy to solve if no failures
- So, will consider
 - link failures
 - node failures, stop and byzantine
- Practical applications
 - commit or abort a transaction
 - agree on the estimated of sensors’ readings
 - agree on a failed component

Synchronous algorithms

CONSENSUS

- Analysis
 - \(O(n) \) time, exactly \(n-1 \) rounds
 - \(O(n \times |E|) \) messages, exactly \((n-1) \times |E| \)

- Exercise
 - write an invariant assertion that can be used to prove formally the correctness of the algorithm
 - hint use round number \(r \)
 - up to round \(r \) shortest paths with at most \(r \) edges are known

Coordinated attack problem

- Several generals plan a coordinated attack
 - Each has its own opinion about attack/not attack
- Generals (and their army) located in different places
 - communication only via messengers
 - messengers can be captured, so messages can be lost
- Each general has to decide: attack/not attack
 - Success: only if all decide to attack
Commit problem

• A distributed transaction is being performed, each process involved has to decide
 — commit/abort the transaction
• Each process wishes to
 — commit: if all local computations succeeded
 — abort: otherwise
• The system will keep a “sound” state only if all processes make the same decision
• Communication: messages can be lost

Consensus problem

• Each process starts with an input value in \{0,1\}
• Eventually each process outputs 0 or 1
• Communication: messages can be lost
• Agreement: All outputs are equal
• Validity:
 — if all processes start with 0, then 0 is the only possible output
 — if all processes start with 1 and all messages are delivered, then 1 is the only possible output
• Termination: All process eventually decide

Consensus with link failures

Theorem: There is no algorithm that solves consensus if messages can get lost.

Proof: Let \(G \) be a graph with 2 nodes connected by an edge. Assume by contradiction that exists A that solves problem in \(G \).
Let \(\alpha \) be the execution where both start with 1 and all messages are delivered.
By the validity condition, both decide 1. Let \(r \) be the round by which both decisions are made.
W.l.o.g., assume in \(\alpha \) each process sends a msg in each round (can add dummymsgs).

Proof (ctnd):

ContradicMon. \(\square \)
• What does it mean?
 – there is little we can do in the face of unreliable communication

• Real systems
 – not all messages get lost!

• We can relax the problem requirements or strengthen the model
 – have an upper bound on the number of failures
 – use randomization

• For any particular adversary
 – any fixed set of initial values
 – any fixed pattern of failures

• Any particular set of random choices made by the processes
 – determines a unique execution

• Random choices \(\Rightarrow\) Probability distribution over set of all executions

• Given a \(\gamma\), we define the information level
 – \(\text{level}(i,k)\), for any process \(i\) and round \(k\):
 • \(k=0\): \(\text{level}(i,k)=0\)
 • \(k=0\) and \(\exists i' s.t. \{i\} \not\subseteq \{i'\} \Rightarrow \text{level}(i,k)=0\)
 • \(k=0\) and \(\forall i', j, (i,j) \not\subseteq (i',j)\):
 \(\forall i', j, \lambda \equiv \max\{\text{level}(i',k): (i',k) \subseteq (i,k)\}\) and
 \(\text{level}(i,k) = 1+ \min\{\lambda, \gamma\}\)

• Information level (informal)
 – what processes known about other processes
 • 0 at the beginning
 – 1 when it hears from all other processes
 • increases to \(\lambda+1\) when process knows that all other processes have reached level \(\lambda\)

• Agreement: For every adversary \(B\),
 \(\Pr[(\text{different outputs})] \leq \epsilon\)

• Adversary \(B\) chooses input values and failures

• Communication pattern
 – \(\gamma \subseteq (i,j,k): (i,j) \in E\) and \(k\) integer, \(k \geq 1\)

• A communication pattern is good if
 – \(\forall (i,j,k) \in \gamma, k \leq r\)

• Adversary can choose
 – assignment of input values
 – any good communication pattern
\begin{itemize}
 \item RandomAttack algorithm
 \begin{itemize}
 \item Each process \(i \) keeps track of its own information level, \(\text{level}(i,k) \).
 \item Process 1, at the very beginning, chooses a random integer value \(k \in [1,r] \).
 \item This value is piggybacked on all msgs.
 \item The initial values and the levels known by process \(i \) are also piggybacked on all msgs sent by \(i \).
 \item That's all the information known by \(i \).
 \item Processes send msgs at every round.
 \item At round \(r \) a decision is made.
 \begin{itemize}
 \item \(1 \): if \(\text{level}(i,k) \geq k \) and all initial values are 1.
 \item 0: otherwise.
 \end{itemize}
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item Lemma 1: For any good communication pattern \(\gamma \), any \(k, 0 \leq k \leq r \), and any \(i \) and \(j \):
 \[\text{level}(i,k) - \text{level}(j,k) \leq 1. \]
 \item Proof: Left as exercise.
\end{itemize}

\begin{itemize}
 \item Lemma 2: If \(\gamma \) is the "complete" communication pattern, then for all \(i \) and all \(k \), \(\text{level}(i,k) = k \).
 \item Proof: Left as exercise.
\end{itemize}
Distributed Algorithms

Problem definition for stop failures:

- **Agreement**: No two different outputs.
- **Validity**: if all processes start with the same initial value \(v \in V \), then \(v \) is the only possible output.
- **Termination**: All nonfaulty processes decide.

for Byzantine failures:

- **Validity**: If all nonfaulty processes start with same \(v \in V \), then \(v \) is the only possible output for a nonfaulty process.

Proof (ctd): Termination is obvious.

Validity: If all start with 0, 0 is the only possible decision. If all start with 1 and all msgs delivered. By Lemma 2 we have \(\text{level}(i,r) = r \), and thus, by the code, in round \(r \), level(i)_r = r.

Since level(i)_r \(\geq 1 \), it follows that key = \(\bot \) and \(\text{val}(i, \bot) \). Since key is always \(\leq r \), 1 is the only possible decision.

Agreement: \(W \), let key = level(i)_r at round \(r \). By Lemma 1, all \(\lambda \), are within 1 of each other.

If (chosen key > max(\(\lambda \))) or (some input 0) then all processes decide 0.

if (key \(\leq \min(\lambda) \)) and all inputs 1) all processes decide 1.

Disagreement only when key = max(\(\lambda \)). Probability of this event is \(1/r \). Indeed max(\(\lambda \)) is chosen by the adversary, while key is chose uniformly at random in \([1,r] \).

Consensus with process failures

- Now we assume
 - links do not fail
 - processes may fail
 - stop failures
 - byzantine failures

- Number of failures upper bounded
 - \(f \) is maximum number of failures

- Input values are taken from a fixed set \(V \)

FloodSet

- Assume a complete graph

- **FloodSet**
 - Each process \(i \) maintains a variable \(W_i \) that contains a subset of \(V \).
 - Initially \(W_i = \{ i \} \)
 - For each of \(f+1 \) rounds
 - each process \(i \) broadcasts \(W_i \)
 - adds all the elements of the received sets to \(W_i \)
 - After \(f+1 \) rounds processes decides
 - if \(W_i = \{ v \} \), a singleton set, decide \(v \)
 - otherwise decide on a default value \(v_d \)

Lemma 1: If no process fails during a particular round \(r \), \(1 \leq r \leq f+1 \), then \(W_i(r) = W_j(r) \forall i, j \) active after \(r \) rounds.

Theorem: FloodSet solves consensus

Proof: Termination. All decide at round \(f+1 \).

Validity. If all initial values are \(v \), then \(v \) is the only value sent in msgs. Each \(W_i(f+1) \) is non-empty (initially contains \(v \)). Hence \(W_i(f+1) = \{ v \} \).

Agreement. By Lemma 3, \(W_i(f+1) = W_j(f+1) \).

processes \(i \) and \(j \), decide the same value.
- Complexity analysis
 - time: \(f+1 \) rounds
 - msgs: \(\Omega((f+1)n^3) \)
 - actually since msgs are of size \(O(n) \), we should consider this size. Let \(k \) bits needed for one value. each message is \(O(nk) \).
 - msgs: \(O((f+1)n^2) \)

- Exercise: think about how to reduce msgs
 - Hint: Think about what the processes need to know about \(W \) to make a decision ...

- EIG algorithms
 - processes relay initial values for several rounds
 - record values and the "route" followed by values
 - each value is received along multiple paths
 - At the end, a commonly agreed-upon rule is used do decide a value as a function of the recorded values
 - EIG algorithms are costly
 - not worth for stopping failures
 - will be useful for Byzantine failures
 - stopping case is a simple introduction

- Exponential Information Gathering

- EIG stop algorithm
 - Each process maintains a copy of the EIG tree
 - Computation proceeds for \(f+1 \) rounds
 - processes relay initial values on all possible paths
 - Processes store values in nodes of the EIG tree
 - The root of process \(i \), gets \(v \)
 - Node \(j \), at level 1, gets the value that \(j \) tells \(i \)
 - If at level \(k \), node with label \(i_1,i_2,...,i_k \), gets \(v \) means
 - \(i_1 \) has told \(i_2 \) at round \(k \) that \(i_1 \) has told \(i_2 \) at round \(k-1 \) that \(i_2 \) has told \(i_3 \) at round \(k-2 \) ... that \(i_k \) has told \(i_{k-1} \) at round 1 that \(i_1 \) initial value is \(v \).
 - A node can be empty
 - the communication chain has been broken by a fault

- EIG tree

- FloodSet

- EIG tree
EIG stop algorithm

- Let W_i be the set of all values in the EIG tree for process i.

Lemma: If process i and j are both non-faulty then $W_i = W_j$.

- Decision: if $W = \{v\}$ is a singleton, decide v otherwise decide v_0, a default value.

Theorem: EIG Stop solves consensus.

Byzantine failures

- A faulty node has unrestricted behavior
 - can be malicious
- We still consider complete graphs of n nodes
- Byzantine consensus is more difficult
 - stop failures, can tolerate any number f of faults
 - Byzantine failures: we need $n > 3f$

Execution α_1

- p_1 and p_3 send their initial value
- p_2 (faulty process) tells truth

Execution α_2

- p_1 (faulty process) tells truth
- p_2 and p_3 send their initial value

What is the decision?
Distributed Algorithms

Lemma 2: After f+1 rounds, if x is a label ending with the index of a non-faulty process then there is a value v s.t. $\text{val}(x) = \text{newval}(x) = v$ for all non-faulty processes i.

Proof: If $k \notin \{i,j\}$ then since k is non-faulty it sends the same message to i and j. The same holds if $k \in \{i,j\}$ (processes send msg's to themselves).

Lemma 1: After f+1 rounds, if i,j,k are all non-faulty, with $i \neq j$, then $\text{val}(x) = \text{val}(x)$ for every label x ending in k.

Proof: If $k \notin \{i,j\}$ then since k is non-faulty it sends the same message to i and j. The same holds if $k \in \{i,j\}$ (processes send msg's to themselves).
Lemma 3 (validity): If all non-faulty processes begin with same \(v \), then \(v \) is the decision.

Proof: All non-faulty processes send \(v \) in first round. Hence \(\text{val}(i) = v \) for non-faulty \(i,j \).

Lemma 2 implies that \(\text{newval}(i,j) = v \) for non-faulty \(i,j \).

The majority rule used for the decision implies that \(\text{newval}(\lambda,i) = v \) for non-faulty \(i \).

- *Path covering:* set of nodes \(C \) s.t. every path from root to leaf has at least one node in \(C \)
- *Common node:* in any execution \(\alpha \), after \(f+1 \) rounds, all non-faulty have same \(\text{newval}(x) \).

Lemma 4: After \(f+1 \) rounds, in any execution \(\alpha \), there exists a path covering with all nodes common in \(\alpha \).

Proof: Let \(C \) be the nodes with labels \(x_j \), where \(j \) is non-faulty.

By Lemma 2, all these nodes have \(\text{newval}(x) = v \) for non-faulty \(i \).

Hence nodes of \(C \) are common.
Moreover \(C \) is a path covering by construction of the EIG tree.

Lemma 5: The EIG root node \(\lambda \) is common.

Proof: Left as exercise.

Termination is obvious; Lemmas 3 and 5 imply:

Theorem: The EIG Byzantine algorithm solves the Byzantine consensus problem for \(n > 3f \).

Analysis:
- \(f+1 \) rounds
- \(O((f+1)n^2) \) msgs, \(O(n^{f+1}b) \) bits of communication.

To \(p_2 \) and \(p_3 \), \(\alpha - \alpha_1 \) in \(A \), where \(p_3 \) is faulty.

By validity in \(A \), \(p_2 \) and \(p_3 \) decide \(0 \) in \(\alpha_1 \).

Hence we conclude that they decide \(0 \) also in \(\alpha \).
To p_i and p'_i: $\alpha = \alpha_2$ in A, where p_i is faulty. By agreement in A, p_i and p'_i decide same value in α. They decide same value also in α.

Theorem: There is no algorithm for Byzantine consensus if $3 \leq n \leq 3f$.

Proof: By contradiction assume A exists; we transform it into B to solve problem for $n=3$, $f=1$.

Partition processes of A into 3 subsets A_1, A_2, A_3 each of size at most f.

Algorithm B for p_1, p_2, p_3:

- each $p_i, i=1, 2, 3$, keeps track of the states of all processes in A_i and simulates those processes. Assigns its own initial value to all processes of A_i any msgs sent/received by any process in A_i are sent/received by p_i.

If any simulated process of A_i decides a value, p_i decides on that value (if more than 1, p_i can choose any)

Claim: B solves Byzantine consensus.

- Fix any execution α of B, with at most one failure, say p'_1.
- Let α' be execution of A obtained with the simulation.

There are at most f failures in α' [set A_j] and thus consensus is solved in α'.

Termination (B): Consider $p_1 (p_3)$ in α. Let j be any process of A_2 (A_3) j decides in α' and by the simulation p_2 decides in α.

Validity (B): If all nonfaulty in α' start with v, then all nonfaulty in α' start with v. Hence they decide v in α' and by the simulation decide v in α.

Agreement (B): By the simulation $p_1 (p_3)$ decide a value decide by any process in $A_2 (A_3)$. But in α' all processes in A_1 and A_j decide same value.

Theorem: Byzantine consensus cannot be solved in less than $f+1$ rounds.

Proof: Omitted.

- So far
 - complete graph with n node
 - can simulate global communication (at the expense of communication and time complexity)
 - but need to take into account network partitions in case of faults

Theorem: Byzantine consensus can be solved in general graph G if and only if

1. $n > 3f$
2. $conn(G) > 2f$

Theorem: Stop-failure consensus can be solved in general graph G if and only if

1. $conn(G) > f$