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3. The Financial Cryptographic API 

3.1. Why Are We Interested? 

The security of Automatic Teller Machine (ATM) and Electronic Funds Transfer at the Point of Sale 

(EFTPOS) networks was perhaps the most significant driver for modern cryptography, responsible for 

drawing it out of the secret government and military departments into the commercial world.  It has 

been described as the so-called ‘killer application’ of cryptography [An01].  As a mature technology 

in a young field it presents a unique opportunity to study the phenomenon of the degradation of 

security over a prolonged time period.  

 

Secondly, the concept of a ‘PIN’ is internationally understood and accepted.  It competes with the use 

of passwords for the title of the most important identification technique.  After all, everyone with a 

bank account and card has a PIN number and this was true before the advent of the Internet age. 

 

The scale of use is impressive.  It includes bank, credit and debit cards, card issuing banks and cards 

associations such as VISA, MasterCard, Europay and American Express.  An enormous amount of 

money is protected daily by these security mechanisms.   

3.2. Financial Security 101 

3.2.1. Terminology 

The account holder is the individual or entity that holds the account at the bank.  We sometimes refer 

to the account holder as the user or customer.  The bank, which issued the card and PIN to the account 

holder, is known as the issuing bank while the bank responsible for initially acquiring the transaction 

from the user (i.e., the account holder or customer) is known as the acquiring bank.  PIN is an 

acronym for Personal Identification Number.  This is a number that is used by the account holder to 

verify his identity to the issuing bank and is used as a means of authenticating a transaction.  

Associated with each user’s account is an identifying account number known as the Personal Account 

Number (PAN).  The bank uses the PAN to identify which account is being used in the transaction.  

PINs typically consist of between 4 and 12 decimal digits.  Since knowledge of the PIN gives the right 

to transact with the account, it is imperative that the PIN be kept secret.  This is done using encryption.  
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Prior to being encrypted, the PIN is formatted into an 8-byte buffer known as the clear PIN block 

(PB).  The encrypted results is termed an encrypted PIN block (EPB).  

3.2.2. Architecture 

The diagram below (Figure 3-1) is a simple representation of an ATM or EFTPOS network.  On the 

extreme left is the customer facing device, typically an ATM or point of sale (POS) device (although it 

could just as easily be a web browser, mobile phone or another of the new generation transacting 

interfaces).  This device is connected to the bank that ‘operates’ the device, i.e., the acquiring bank.    

Note the user does not necessarily have to hold an account with the acquirer and for this illustrative 

example we assume that this is not the case.  The acquiring bank must thus send the transaction to the 

bank with which the user does have the account (i.e., the issuing bank).  The transaction is passed to 

an intermediary switch, which then ‘switches’ the transaction to the acquiring bank.  Sometimes the 

switch does not have a direct link to the acquiring bank and so sends the transaction to second switch. 

ATM Issuing Bank 1Switch 1Acquiring
Bank

Issuing Bank 2

Switch 2

1

2

3

 

Figure 3-1: Simple representation of the EFT network 

 

The reason for this architecture lies in the encryption methods used to protect the PIN.  ATM and 

EFTPOS networks were first established in the late 70’s and used symmetric key encryption only 

(typically DES).  Thus any two entities that wanted to communicate with each other, first had to 

establish a shared key - normally done manually using key shares.  The two entities are said to share a 

zone key.  This process had three difficulties.  Firstly a given bank could not transact with a (new) 

bank with which it had not yet established a shared key.  Secondly, the process of establishing shared 
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keys with all the institutions with which it wanted to transact, was time consuming and costly.  

Finally, it required the secure storage of a large number of keys.  Thus the use of switches arose to 

combat these problems.  An acquiring bank needed only to share keys with one or more switches, 

which then provided the link from the issuing bank to the acquiring bank. 

 

Let us map the path of the account holder’s PIN through the system and identify the operations 

performed upon it.  At point 1 on the diagram (the customer facing device) the user enters his or her 

PIN number.  The PIN is immediately encrypted in the PIN entry device using the key shared with the 

acquiring bank and then sent to the acquiring bank.  The bank must now forward the encrypted PIN to 

the switch.  But the key shared between the bank and the switch is different, belonging to a different 

key zone from that shared by the acquiring bank and ATM.  Thus the acquiring bank must first 

decrypt the PIN under the first key and then re-encrypt it under the key shared with the switch.  The 

same process occurs at the switches and is marked by a 2 on the diagram.  Finally, when the encrypted 

PIN arrives at the issuing bank, the bank must confirm that it is in fact the correct PIN associated with 

the account.  Thus we have identified the three basic functions that must exist in our financial API, 

namely 

1. PIN encryption, 

2. PIN translation between zone keys and 

3. PIN verification. 

3.2.3. PIN Algorithms 

3.2.3.1. Encryption 

The PIN encryption is a trivial process.  The PIN is formatted into an 8 byte clear PIN block and then 

encrypted using DES or 3DES (the block size of the cipher accounts for the 8 byte length of the clear 

PIN block).  However, there exist a multitude of recognised formats for the clear PIN block. 

3.2.4. PIN Block Formats  

A fairly standardized notation is used to describe the possible formats whereby characters are used as 

placeholders for possible decimal and hexadecimal values.  We reproduce the notation here for 

completeness. 

 
X'y' denotes the hexadecimal character y and is equivalent to y16. For
example, X'0' = 016 = 00002, X'1' = 116 = 00012 and X'F' = F16 = 11112.

P = A 4-bit decimal digit that is one digit of the PIN value.
C = A 4-bit control value. The valid values are X'0' and X'1'.
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L = A 4-bit hexadecimal digit that specifies the number of PIN digits.
F = A 4-bit field delimiter of value X'F'.
f = A 4-bit delimiter filler that is either P or F, depending on the

length of the PIN.
D = A 4-bit decimal padding value. All pad digits in the PIN block

have the same value.
X = A 4-bit hexadecimal padding value. All pad digits in the PIN block

have the same value.
x = A 4-bit hexadecimal filler that is either P or X, depending on the

length of the PIN.
R = A 4-bit hexadecimal random digit. The sequence of R digits can each

take a different value.
r = A 4-bit random filler that is either P or R, depending on the

length of the PIN.
Z = A 4-bit hexadecimal zero (X'0').
z = A 4-bit zero filler that is either P or Z, depending on the

length of the PIN.
S = A 4-bit hexadecimal digit that constitutes one digit of a sequence

number.
A = A 4-bit decimal digit that constitutes one digit of a user-specified

constant.

One of the simpler formats is known as VISA Format 3.   This format specifies that the PIN length can 

be a minimum of 4 digits and a maximum of 12 digits. The PIN start from the left most digit and ends 

by the delimiter ('F'). An example of a 6 digit PIN is:
VISA Format 3 PIN Block (PB) = PPPPPPFXXXXXXXXX
 

The most important (and complicated) format is ANSI X9.8 – the format specified by the ANSI 

standards on retail banking [ANSI X9.8].  This format is also known as ISO-0, VISA-1, VISA-4 and 

ECI-1.  It is unique in that the 12 rightmost PAN digits are prepended with zeros and exclusive-ored 

(xored, ⊕ ) with the PIN to yield the clear PIN block 

 
P1 = CLPPPPfffffffffFF
P2 = ZZZZAAAAAAAAAAAAA
ANSI X9.8 PIN Block (PB) = P1 ⊕ P2
where C = X'0' and L = X'4' to X'C'

This was done for two reasons.  It binds the account number to the PIN block and so provides a 

measure of protection against an incorrect account number being subsequently used.  Secondly it 

diversifies the encrypted PIN block according to the account number.  Even though two users may 

have the same PIN number, the associated encrypted PIN blocks will bear no resemblance since they 

have different account numbers.  This prevents the so-called  “code book” attack, in which an 

adversary makes use of a dictionary of encrypted PIN blocks. 

 

The list of PIN formats includes: 

• ISO-0 (ANSI X9.8, VISA-1, ECI1) 
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• ISO-1 

• ISO-2 

• VISA-2, VISA-3, VISA-4 

• IBM 3624, IBM 3621, IBM 4700 

• ECI-2, ECI-3 

• Docutel 

 

3.2.5. PIN Algorithms Continued 

3.2.5.1. Translation and Reformatting 

The translation function merely decrypts the PIN encrypted under the input key and then re-encrypts it 

under the output key before transmission to the target entity.  What happens should this entity not 

support the PIN format used?  The simple solution is an extension to the translate function called 

reformat which allows the user to specify a different format of the output PIN block.  Should the 

output format be ANSI X9.8, the function needs to be able to specify a PAN as well.   

3.2.5.2. Generation and Verification 

PIN generation can be achieved in a variety of ways, either by means of an algorithm or chosen by a 

user (or both).  An example of the algorithmic approach is the IBM 3624 PIN Generation Algorithm, 

which generates a PIN based on account- or person-related data, called the validation data.  The 

validation data is enciphered under a PIN generating key, decimalised, and the desired number of 

digits selected as the PIN. 
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Validation Data

Ciphertext

Digit Replacement

EDE Multiple Encryption

Decimalization Table

PIN Generation
Key

Generated PIN
 

Figure 3-2: PIN generation algorithm 

 

Verification is achieved by repeating the process (except that now the key may be called the PIN 

verification key) and comparing the calculated PIN with the PIN that is extracted from the encrypted 

PIN block.   

 

3.2.5.2.1. Offsets 

Generating algorithms can be extended to cater for chosen PINs.  This is achieved through the use of 

offsets, which relate the algorithm generated PIN to the chosen PIN.  The normal generation algorithm 

is run (with the same parameters) and the output called an intermediate PIN.  The offset is calculated 

by subtracting modulo 10 some subset of the intermediate PIN digits (usually either the leftmost or 

rightmost digits) from the chosen PIN digits. 
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Validation Data

Ciphertext

Digit Replacement

EDE Multiple Encryption

Decimalization Table

PIN Generation
Key

Intermediate PIN (IPIN)

Customer Selected PIN

Digit Subtraction modulo
10

Offset
 

Figure 3-3: PIN offset generation algorithm 

Verification requires that the offset be supplied to the call as well. 
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Validation Data

Ciphertext

Digit Replacement

EDE Multiple Encryption

Decimalisation Table

Intermediate PIN (IPIN)

Offset

Digit Addition modulo 10

Calculated PIN

PIN Verification
Key

 

Figure 3-4: PIN verification algorithm 

 

3.2.5.2.2. PIN Verification Values (PVV) 

For a chosen PIN, the PVV generation algorithm accepts a PIN (either clear or encrypted) as input and 

must calculate a PIN verification value (PVV), which is stored.  The algorithm is not unlike the PIN 

generation algorithm described in Figure 3-2 but with two significant differences.  Firstly, the 

validation data has been replaced by the transformed security parameter (TSP).  The VISA PVV 

algorithm encrypts the concatenation of 11 PAN digits, a key index (a digit in the range 1 to 6) and the 

first 4 digits of the PIN extracted from the encrypted PIN block (i.e. TSP = PAN || Key Index || PIN).  

Secondly, the result is decimalised in a unique way.  Scanning from left to right, the first 4 decimal 
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digits encountered are returned as the PVV.  Should there be less than 4 digits, a second scan is 

performed, in which the non decimal digits are converted to decimal digits (by subtraction modulo 

10), and the first 4 resulting digits returned as the PVV. 

Transformed Security
Parameter (TSP)

Ciphertext

Decimalization Algorithm

EDE Multiple EncryptionPIN Generation
Key

PIN Verification Value
(PVV)

 

Figure 3-5: PVV generation algorithm 

 

Verification involves extracting the PIN, calculating the verification value and comparing it to a 

supplied PVV.  An example is the VISA PIN verification algorithm.  

3.3. The Standard Financial API 

 

3.3.1. Case Study of the CCA API 

The PIN translate and reformat command in the CCA API (Release 2.40) is called CSNBPTR and has 

the following prototype.  Note that the prototype has been slightly simplified. 

 
CSNBPTR
{
return_code, //Output – error code
reason_code, //Output - description of error
input_PIN_encrypting_key_identifier, //Input – old key
output_PIN_encrypting_key_identifier, //Input – new key
input_PIN_profile, //Input – the original PIN block format
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input_PAN_data, //Input – the original PAN
input_PIN_block, //Input – the encrypted PIN block
rule_array_count, //Input
rule_array, //Input
output_PIN_profile, //Input – the desired PIN block format
output_PAN_data, //Input – the desired PAN
output_PIN_block //Output

}
 

The return_code is a general error code with the  reason_code indicating the reason for the error.  

The key identifiers (input_PIN_encrypting_key_identifier and 

output_PIN_encrypting_key_identifier) are the key tokens.  The pin profiles specify the PIN 

block formats (e.g. ANSI X9.8, etc) and the PAN_data contains the PAN.  The encrypted PIN blocks 

are called the input_PIN_block and output_PIN_block respectively. 

 

The rule array is a list of parameters for the function (the rule_array_count indicates the 

number of parameters in the list).  For this function, the caller can specify either TRANSLAT or 

REFORMAT. Translate indicates that only the PIN encrypting key is changed in the function, while the 

reformat option is used to change some combination of key, PIN block format or PAN. 

 

The PIN verify command is known as CSNBPVR. 

 
CSNBPVR
{
return_code, //Output – error code
reason_code, //Output – description of error
PIN_encrypting_key_identifier, //Input – PIN encrypting key token
PIN_verifying_key_identifier, //Input – verification key token
PIN_profile, //Input – PIN block format info
PAN_data, //Input – the PAN
encrypted_PIN_block //Input – encrypted PIN block
rule_array_count, //Input – a count of the parameters
rule_array, //Input – parameters for the call
PIN_check_length, //Input – length of PIN to check
data_array //Input – the validation (or other) data

}
 

Here the rule_array indicates which algorithm to use to verify the PIN (e.g. IBM, IBM Offset, 

VISA PVV, etc).  The data_array contains the validation data or transformed security parameter 

(depending on the algorithm). 

3.3.2. Case Study of the Thales-Zaxus-Racal API 

The Thales API supports a number of PIN encrypting keys types.  These are 

• Terminal PIN keys (TPK) which are used in the PIN encrypting terminal or device, 
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• Zone PIN key (ZPK) which are shared between entities sharing a key zone, and 

• Local Master keys (LMK). 

The Pin verification key is known as the PVK. 

 

There are a number of PIN translation functions that allow translation between each of the above key 

types.  The basic prototype (ignoring key types) is as follows: 

 
PIN Translate
{
//inputs

Source Key, //source TPK/ZPK/LMK key
Destination Key, //destination TPK/ZPK/LMK key
Maximum PIN Length, //Value of 12
Source PIN Block, //the encrypted PIN block under the source key
Source PIN Block Format, //the format code for the source PIN block
Destination PIN Block Format, //the format code for the dest PIN block
Account Number, //the rightmost 12 digits of the PAN

//outputs

Error Code, //e.g. 00 = no error; 20 = pin block data error
PIN Length, //the length of the returned PIN
Destination PIN Block, //the encrypted PIN block under the dest key
Destination PIN Block Format

}
 

While the function does not support different source and destination account numbers (PAN), one can 

effect this operation by simply calling this function twice in sequence.  On the first call we convert 

from the ANSI X9.8 format with associated source account number to a format without an account 

number.  On the second call we translate back to ANSI X9.8 format, but specify the desired 

destination PAN.   

 

The two PIN verification prototypes are also standard 
PIN Verification Using Offsets
{
//inputs

PIN encrypting Key, //TPK/ZPK/LMK
PIN verification Key, //PVK
Maximum PIN Length, //Value of 12
Encrypted PIN Block, //the encrypted PIN block
PIN Block Format, //the format code for the source PIN block
Account Number, //the rightmost 12 digits of the PAN
Decimalization Table, //the decimalization table
Validation Data, //the validation data
Offset, //the offset

//outputs
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Error Code //e.g. 00 = no error; 01 = verification failed
}

PIN Verification Using PVV
{
//inputs

PIN encrypting Key, //TPK/ZPK/LMK
PIN verification Key, //PVK
Maximum PIN Length, //Value of 12
Encrypted PIN Block, //the encrypted PIN block
PIN Block Format, //the format code for the source PIN block
Account Number, //the rightmost 12 digits of the PAN
PVKI, //between 0 and 6
PVV, //the pin verification value

//outputs

Error Code //e.g. 00 = no error; 01 = verification failed
}

Hence we can conclude that the Thales PIN translate function matches our standard financial API 

functionality. 

 

3.3.3. On the Validity and Applicability of the Standard Financial API 

After comparing the functionality of the proposed standard financial API with the equivalent 

functionality found within the devices that dominate this market (including the CCA, Thales and 

Atalla APIs), we can conclude that our prototypes are indeed accurately reflective of the industry 

norms.  We can thus proceed to the analysis stage with confidence knowing that the results will be 

applicable to the majority of relevant APIs. 

3.4. Known Attacks and Assumed Level of Security 

3.4.1. Exhaustive Key Search (Brute force) 

Exhaustive key search is (almost) always a possibility. It provides an understood upper bound on the 

level of security that is hoped to be achieved - and so any technique that does not improve on it is of 

little interest.  The strength of a secure algorithm is measured by the length of the key (effectively the 

size of the key space required to be searched).  The current standard PIN transaction systems are 

3DES [ANSI97, ANSI X9.8, ANSI X9.17, ANSI X9.24]  - although many (typically historic) single 

DES systems still exist.  Note that this is not an attack against correctness.  In our current reality, a 

3DES system is practically immune to such an attack. 
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3.4.2. Exhaustive Pin Search 

The PIN space is considerable smaller than the key space.  It is thus critical to prevent an adversary 

from being able to mount such an attack (since he would surely and rapidly succeed).  It is probably 

for this reason that the ANSI X9.8 standard (Personal Identification Number (PIN) Management and 

Security) states "The system shall not be capable of being used or misused to determine a PIN by 

exhaustive trial and error".  One obvious potential weakness would be any implementation, which 

accepts clear PINs to either the PIN verification or generation functions.  An API that allows such 

functionality typically restricts it to a secure or authorized mode, thereby ensuring that it is not 

misused.  At some point, the user has to be able to enter a PIN in the clear.  However, this is a manual 

process (usually at a trusted interface) and hence cannot be easily automated.  In addition, it is 

common practice to detect and prevent a user’s trying of many combinations. 

3.4.3. The Code Book Attack 

To mount such an attack, the adversary will build up a ‘code book’ containing every PIN and the 

result of that PIN encrypted under a given key.  To recover an unknown encrypted PIN, the attacker 

simply consults the codebook to find the encrypted PIN block and hence identify the associated PIN.  

Should the PIN be encrypted under a different key to the one used for the codebook, the attacker 

simply translates it to encryption under the codebook’s key.  As with the exhaustive key search, it 

should not be possible for the attacker to build up such a codebook and the same practical limitations 

apply.   

 

For an ANSI X9.8 format n digit PIN, 10n encrypted PIN blocks are required to be stored (for a given 

account number).  This represents a trivial memory requirement and is insignificant to search.  

Naively, attacking formats containing random padding would appear to require a larger codebook, but 

this is not the case.  All formats are ‘equally’ vulnerable, since the format can be changed in the 

translate (reformat) call (to the weakest one).  The same technique can be used to ‘eliminate’ the 

variation offered by the PAN.  It is noteworthy that regardless of format, key and pan, all encrypted 

pins are potentially vulnerable to a single codebook. 

3.4.4. Key Separation Attacks 
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achieving this.  The first is to use different master keys for encrypting different types of keys.  

Incorrectly using an encrypted key would result in the key being decrypted under the incorrect master 

key, yielding a 'random' result.  This may be detected if parity checking of keys is enforced or enabled.  

The second method, involves the creation of a variant of the master keys based on the type of key.  

Perhaps the most significant system is IBM's control vector method.  A unique control vector is 

associated with each type of key.  To encrypt or decrypt the key, the master key variant is created by 

exclusive-oring the master key with the control vector.  Again, using an encrypted key as incorrect 

type, results in a 'random' result. 

3.5. PIN Recovery Attacks 

In this section we present a family of six new API attacks leading to PIN recovery.  We describe these 

attacks in the context of the standard financial API.  Thus we can apply them immediately to our 

reference APIs. 

3.5.1. The Attack Model 

We have the following inputs: 

• Query access to a (potentially tamper proof) device with the typical PIN transaction set (our 

standard financial API as described above) 

• An encrypted pin encrypting key which is valid for the device above (i.e., the PIN encrypting 

key is itself encrypted under a (master) key resident in the device) 

• A valid encrypted PIN block (EPB), which was encrypted under the encrypted PIN encrypting 

key  

It is our goal to find superior techniques to those listed under `Known Attacks', which exploit potential 

lack of correctness of the typical PIN transaction sets. 

3.5.2. Our Results 

We present 6 distinct attacks against the standard financial API functions that lead to the recovery of 

the PIN from an encrypted PIN block.  These are 

• the ANSI X9.8 (ISO-0) attack against functions to which the PAN is supplied, 

• the extended ANSI X9.8 attack against translate and reformat functions,  

• the decimalization attack against PIN verification algorithms using offsets,  

• the key separation attack #1 against PIN verification functions based on failure to enforce 

key separation between verification and translation (encryption),  
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• the key separation attack #2 against PIN verification functions based on failure to enforce 

key separation for different verification algorithms, and 

• the check value attack against PIN verification algorithms using the check value of a key. 

The attacks are computationally trivial and extremely fast to implement with the capability of 

recovering many PINs per second, depending on the speed of the target device.  Since the 

vulnerabilities identified by these attacks can be exploited in a number of similar variations, it can be 

viewed as families of attacks. 

3.5.3. ANSI X9.8 (ISO-0) Attack 

The significant input parameters for this attack are the 

• Encrypted PIN Block (EPB) 

• PAN 

• Encrypted ‘In’ Key 

• Encrypted ‘Out’ Key 

 

Our attack strategy is as follows.  In an iterative manner, we make a single modification to the PAN 

and observe the effects.  Under normal operation, the encrypted PIN lock (EPB) will be decrypted and 

combined with the PAN to recover the PIN as per the following process: 

 

INPUTS (EPB, P2) 
1. PB = dk(EPB)
2. P1 = PB ⊕ P2

= 04PPPPFFFFFFFFFF
3. Extract PIN as PPPP and test to confirm it is a valid PIN (i.e. each

P is a valid decimal digit)
4. If test fails then exit with an error
5. Process the rest of the function as normal

Algorithm 1: Normal PIN extraction process 

Since the PIN we are attacking is valid by definition, the function will complete normally. However, 

instead of supplying the correct PAN (effectively P2) to a call, we use a modified PAN (P2’ = P2 ⊕  ∆) 

where say ∆ = 0000x000000000.  Now observe the same process: 

 

INPUTS (EPB, P2’) 
1. PB = dk(EPB)
2. P1’ = PB ⊕ P2’

= (P1 ⊕ P2) ⊕ (P2 ⊕ ∆ )
= P1 ⊕ ∆
= 04PPPPFFFFFFFFFF ⊕ 0000x00000000000

3. Extract PIN as PPPP ⊕ 00x0 and test to confirm it is a valid PIN
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4. If test fails then exit with an error
5. Process the rest of the function as normal

Algorithm 2: Basic ANSI X9.8 attack method 

So if (P ⊕  x) is a decimal digit then the call will proceed normally and pass.  If (P ⊕  x) is not a 

decimal digit then we expect the call to fail and return an error code.  Thus we have a test for (P ⊕  x) 

< 10.  

 

Our next step is to turn this test into an algorithm to identify P.  The simple approach is to try all 

possible values of x, yielding a semi-unique pattern of ‘passes’ and ‘fails’, allowing us to identify P.  

We observe that for ,  if and only if .  Thus, for any given number , 

both 

16Zy ∈ 10<y 101 <⊕y 16Zx ∈

x  and  will result in an identical pattern of ‘passes’ and ‘fails’ and, furthermore, no other 

values of 

1⊕x
x  will yield the same pattern. A more sophisticated approach is to build a decision tree.   

 

This attack will work against any function that accepts the encrypted PIN block as well as the PAN 

and (attempts to) extracts the PIN.  Thus it can be applied against both the verification, translation and 

reformatting functions. 

  

3.5.3.1. Work Factor 

The simplest (and least efficient) algorithm requires 16 calls per PIN digit for a total of 

 to recover the last  PIN digits. ( 21616
2

1
−⋅=∑

−

=

n
n

i

) 2−n

3.5.4. Extended ANSI X9.8 Attack 

The previous attack had two limitations, namely: 

1. it identified each PIN digit as P  as belonging to the set { , and }1, ⊕PP

2. did not recover the first 2 PIN digits. 

We now consider methods to extend this attack.   

 

The attack mechanism involved manipulating (i.e. lying) about the value of the PAN associated with 

the encrypted PIN block.  The logical extension is to ask the question whether there are other 

parameters to these functions that can be manipulated?  The answer is yes - the PIN block format.  

Consider the effect of submitting an ANSI X9.8 formatted PIN to the reformat function but specifying 
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it as a PIN block of another format (e.g. a VISA-3 format).  To simplify the analysis, we assume a 

NULL PAN (i.e. PAN = 000000000000). 

 

INPUTS (EPB, P2, Format’) 
1. The clear PIN block is obtained by decrypting the encrypted PIN block

(i.e. PB = dk(EPB)). Since the clear PIN block is actually an
ANSI X9.8 format, hence
PB = P1 ⊕ P2

= 0LPPPPFFFFFFFFFF ⊕ 0000000000000000
= 0LPPPPFFFFFFFFFF

2. The PIN is extracted according to the VISA-3 formatting rules (i.e.
PIN is extracted as 0LPPPP.

3. The PIN is then formatted into a new PIN block as
P1 = 0L’0LPPPPFFFFFFFF (where L’ = L+2)
P2 = 00000000000000000
PB = P1 ⊕ P2

= 0L’0LPPPPFFFFFFFF (where L’ = L+2)
4. The encrypted output is EPB = ek(PB))

Algorithm 3: Increasing PIN length 

In this process we have extended the original PIN to a new value 0LPPPP.  By doing this, we have 

now exposed the first two PIN digits to the previous ANSI X9.8 attack.  

 

Consider now the effect of using a non-null PAN (∆) at the same time.  The clear PIN block is 

obtained by decrypting the encrypted PIN block (i.e. PB = dk(EPB)).  Since the clear PIN block is 

actually an ANSI X9.8 format,  

PB = P1 ⊕ P2
= P1 ⊕ ∆ (say ∆ = 00000x0000000000)
= 0LPPPPFFFFFFFFFF ⊕ 00000x000000000000

The PIN is extracted according to the VISA-3 formatting rules, which means we expect the 

hexadecimal digit ‘F’ to mark the end of the PIN.  There are 3 possible outcomes: 

If P ⊕ x < 10 (i.e. a decimal digit) then the PIN will be extracted as the six digit PIN 0LPPPP ⊕

00000x.  The call will proceed normally. 

If (P ⊕ x) = F then the PIN will be extracted as the 5 digit PIN 0LPPP.  The call will proceed 

normally. 

However 10 ≤ (P ⊕ x) < ‘F’ is interpreted as a format error resulting in the call failing. 

 

This method allows us to identify uniquely the value of the PIN digits. 
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3.5.4.1. Work Factor 

Again, the simplest (and least efficient) algorithm requires 16 calls per PIN digit for a total of 

 queries plus the initial call to expose the first two PIN digits.  A typical 4 digit PIN is 

thus recovered in 16  queries. 

n
n

i
⋅=∑

=

1616
1

644 =⋅

3.5.5. Decimalization Attack 

The significant input parameters to the decimalization attack are the 

• Encrypted PIN Block (EPB) 

• Validation Data 

• Decimalization Table 

• Offset 

• Encrypted PIN Encrypting Key 

• Encrypted PIN Verification Key 

 

Our attack strategy is as follows.  In an iterative manner, we make a single change to an entry in the 

decimalization table and observe the effects on the offset.  We first demonstrate this by means of an 

example. 

 

Example.   

We start off with a PIN (6598), a PIN verification key, some validation data, a decimalization table 

and the resulting offset (2117). 

PIN = 6598
PIN Ver Key = 05050505 05050505
Val. Data = 11223344 55667788
Ciphertext = E481FC56 58391418
Dec. Table = 01234567 89012345
IPIN = 4481
Offset = 2117
 

We now make a single change to the decimalization table replacing the first entry (which previously 

mapped a 0 in the ciphertext to a 0) with a new value of 1 (i.e. now maps a 0 in the ciphertext to a 1). 

Dec. Table (0)= 11234567 89012345
 

Since the ciphertext does not contain a 0 in the first 4 nibbles, there is no effect on the value of IPIN 

and so the original offset will continue to pass. 
IPIN = 4481
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Offset = 2117 (will pass)
 

Next we replace the second entry in the decimalization table with a 2 (i.e. it now maps a 1 in the 

ciphertext to a 2). 

Dec. Table (1)= 02234567 89012345

Since the ciphertext does contain a 1 in the 4th nibble, this results in a change to the IPIN value. 
IPIN = 4482
This time the original offset of 2117 value will fail.  However the value 2116 will pass.  
Offset = 2117 (will fail)

= 2116 (will pass)
 

Thus we have identified that the 4th digit in the original IPIN is a 1 and hence that the 4th PIN digit is 

1+7 = 8 (IPIN + Offset). 

 

This process can be explained more formally as follows.  Since the user supplies the decimalization 

table to the call, one can repeatedly query the target with modifications to the table.  Suppose we know 

the offset for a given PIN block (using a given decimalization table).  Consider the effect of changing 

a single element in the table (the kth entry in the table mapping {i → ji, i ∈ Z16, ji ∈ Z10} to a new value  

jk') 

 

If the hexadecimal digit k was not found in the first n digits of ciphertext, then there is no change in 

the value of IPIN, and the same value of the offset will pass the verify call.  However, for each 

instance of k in the ciphertext, the corresponding digit of IPIN will be remapped to jk'.  The original 

offset will now fail the verify call.  Using this approach we can identify the possible values of the 

hexadecimal digits in the first n digits of the ciphertext. 

 

This technique can be further strengthen by setting jk' = jk + m where m is a known (non zero) value 

(addition is modulo 10).  Due to the simple relationship between the offset and the IPIN, we know that 

by adding m to a digit in the IPIN, the corresponding digit in the offset is reduced by m.  Thus we can 

search through all possible ciphertext digit locations that contain k, by modifying the offset value and 

supplying the modified offset and decimalization table to the verify function.  After at most 2n queries, 

we will have identified all digit locations in the ciphertext with the value i.  By repeating through all 

possible values of k, we can uniquely determine the value of the first n digits of ciphertext and thus 

IPIN.  Again since we know the offset and IPIN, we can trivially calculate the value of the PIN. 

 

INPUTS: DEC. TABLE 
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1. Search for offset (using the decimalization table i → i mod 10) 

2. For k = 0..15 

2.1. Replace the entry k → k mod 10 in the original decimalization table with k → k + m mod 10 

2.2. For each possible location of k in the ciphertext (including none). 

2.2.1. Test the corresponding modified offset. 

2.2.2. If ‘pass’, then store locations of k in ciphertext. 

3. Decimalise the ‘recovered’ ciphertext and store as IPIN 

4. Return PIN = IPIN + OFFSET 

Algorithm 4: Decimalization Attack 

3.5.5.1. Work Factor 

The initial search for (an unknown) n digit offset requires at most 10n queries (although it may be 

possible to reduce this to 104 + (n-4)•10 queries using the method described in Section 3.5.5.2).  Each 

change to the decimalization table requires at most 2n queries (again it may be possible to reduce this 

to 24 + (n-4) queries).  At most we need to try 15 of the 16 entries in the table for a maximum total of 

15•2n queries.  The actual attack time is dependant on the speed of harvesting the data.  An attack 

against a 4 digit PIN using a known initial offset will require at most 240 queries or less than 0.25 

seconds for a device capable of 1000 transactions per second (TPS).  A low-end device (10 TPS) will 

take at most 24 seconds. 

 

3.5.5.2. Improving the Search for Offsets 

Some APIs allow the caller to specify the length of the offset (i.e., the length of the offset is treated as 

independent of the length of the PIN).  The only restriction is that the offset is at least as long as the 

minimum possible length of the PIN, traditionally 4 digits, and does not exceed the length of the PIN.  

In this case, an attacker can initially search for a 4-digit offset (requiring 104 queries).  Thereafter, 

each subsequent digit can be searched independently by specifying incrementally increasing offset 

lengths.  This search method requires a total of 104 + (n-4)•10 queries to recover a -digit offset. n

3.5.6. Key Separation Attack #1 (Failure to separate PIN encryption and 

verification keys) 

We describe an exhaustive PIN search attack that exploits a lack of separation between 

PINGEN/PINVER and IPINENC/OPINENC keys to perform the search.  Since we have no 

separation, we may interchange the use of the pin encrypting key and the pin verification key.  We 
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wish to recover the PIN (P), encrypted under some key k.  We have the associated encrypted PIN 

block EPB and the encrypted key k.   

 

Our first step, is to translate the EPB to ANSIX9.8 with PAN = 000000088888.  The clear PIN block 

is of the form PB = 04P1P2P3P4FFFFF77777. Let Pi = Pi
1Pi

2Pi
3Pi

4 be a guess for P (for simplicity of 

notation, we have used a 4 digit pin).  We format a 16 hexadecimal validation data string as VAL = 04 

Pi
1Pi

2Pi
3Pi

4FFFFF77777.  We now use this validation data as input to say the IBM Pin Generation 

algorithm using the encrypted key k.  The validation string is encrypted under the clear value of k, 

decimalised and the first 4 digits returned as the generated PIN (Pgen).  We simply compare the first 4 

decimalised digits of our translated encrypted PIN block to Pgen.  If Pi = P, then the values will be 

equal.  We can expect multiple collisions due to the decimalization process and the fact that we only 

have 4 digits to compare.  However, we can eliminate false witnesses by repeating the process and 

modifying the validation data and the PAN (e.g. use PAN = 000000088887 and VAL = 

04P1P2P3P4FFFFF77778).  Simply by iterating through all possible values of Pi we can identify P.  

Alternatively, we can build up a codebook.   

 

One may question why we didn't use a null PAN, and format the validation data as VAL = 

04P1P2P3P4FFFFFFFFFF.  The reason lies in the fact that some API's take as input, effectively an 11 

hexadecimal digit validation string, and extract the last 5 digits from the rightmost 5 digits of the PAN.  

Other API’s require the 12th digit to specify a key index in the range 1 to 6.  The description above 

will satisfy the addition requirement that the PANs supplied to generate and translate functions 

consists of decimal digits (for the above description, the generate call uses a PAN = 000000077777). 

 

A limitation of this attack, is that it requires access to the generate function.  However, as mentioned 

before, this is a security risk in itself, usually protected against by restricted its usage to a secure or 

authorized mode, or alternatively, encrypting the output (or requiring encrypted inputs).  If the output 

is encrypted, then we must obtain the first 4 decimalised digits of the encrypted PIN block as an 

encrypted PIN for comparison.  This in itself is perhaps not a strenuous requirement.  However, there 

is a more powerful version of the attack, using the verify function (which is unlikely to have access 

control restriction).  We proceed as before, generating the validation as before, but supplying it to the 

verification function (using offsets) and supplying the encrypted pin block.  We require one extra 

piece of information, namely the offset.  If Pi = P, the validation data is identical to the clear pin block 

as before, the intermediate PIN will equal the first 4 decimalised digits of the encrypted PIN block 

(which is known).  We denote this value by IPIN.   
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The offset is the difference of the intermediate PIN and the clear PIN modulo 10.  Hence the offset 

will equal will equal the difference of Pi and IPIN modulo 10.  Thus for each value Pi we calculate 

OFFSET = Pi - IPIN and supply it to the verification call.  If Pi = P, the call will pass.  False witnesses 

can be eliminated as before. 

3.5.6.1. Work Factor 

Essentially a method to search the PIN space, this attack therefore requires 10  queries to identify an 

 digit PIN given knowledge of a suitable offset.  Searching for the offset requires 10

n

n n queries 

(although it may be possible to reduce this to 104 + (n-4)•10 queries using the method described in 

Section 3.5.5.2). 

3.5.7. Key Separation Attack #2 (Competing Verification Algorithms) 

In this attack, we play two different verification algorithms against each other.  This is a fascinating 

result since it shows that taking two (potentially) individually secure verification functions, and 

allowing both in a single API can destroy its security.  It serves as a warning for designers (and 

implementers) of API's against blindly adding functionality, even though the function may be secure 

on its own.  It also shows the need for extremely fine granularity of separation of keys associated with 

different functions, even though the functions are of a similar nature. 

 

The VISA PVV algorithm encrypts the concatenation of the 11 digit transformed security parameter 

(TSP), a key index (a digit in the range 1 to 6) and the first 4 digits of the PIN extracted from the 

encrypted PIN block (i.e. TSP || Key Index || PIN).  The result is decimalised in a unique way.  

Scanning from left to right, the first 4 decimal digits encountered are returned as the PVV.  Should 

there be less than 4 digits, a second scan is performed, in which the non decimal digits are converted 

to decimal digits (by subtraction modulo 10), and the first 4 resulting digits returned as the PVV. 

 

The probability that the first 4 digits are indeed all decimal digits (and hence form the PVV) is 

( 153.0
16
10 4

=





 ).  Thus for a given key, by trying 7 different values for the TSP, we can expect one 

to exhibit this property. 

 

Consider now the result of supplying the value (TSP || Key Index || PIN) as validation data to the 

(IBM) offset algorithm under the same verification key and using a decimalization table that maps n 

→ n mod 10.  The first 4 digits recovered from the encryption are the same as the PVV, and 
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unchanged by the IBM decimalization process (i.e. IPIN = PVV).  These 4 digits are subtracted from 

the clear value of the PIN to obtain the offset (or OFFSET = PIN - PVV). 

 

It is possible to use this relationship to search for the PIN, by iterating through all possible value for 

the PIN (denoted Pi), and testing whether OFFSETi = Pi - PVV, satisfies the verification algorithm 

with validation data (TSP || Key Index || Pi).  As indicated earlier, the entire process needs to be 

repeated 7 times on average to witness the true value for the PIN.  We can expect some false witnesses 

for the PIN but these can be eliminated by increasing the number of repetitions (say to 14 when we 

can expect the real PIN to have been witnessed twice). 

 

INPUTS: Encrypted PIN Block 

 

1. Loop i: (i = 1..7) 

1.1. TSPi <= i || 1 || 1234 

1.2. Search for PVVi 

1.3. Loop j: (j = 0...9999) 

1.3.1. PINj = j 

1.3.2. OFFSETi, j = PINj- PVVi 

1.3.3. VAL DATAi,j = i || 1 || j 

1.3.4. Test if OFFSETi, j verifies the PIN, if so then j is a candidate. 

Algorithm 5: Key Separation Attack against competing verification algorithms 

Example: 
PIN 1234
Verification Key (K) 0505050505050505

i = 1:
TSP1 10000000000011234
E(K)(TSP

1) D84355EF089EF293
PVV1 8435
Will not correctly witness the PIN.

i = 2:
TSP2 2000000000011234
E(K)(TSP

2) 9D15A1C0BE1DD129
PVV2 9151
Will not correctly witness the PIN.

i = 3:
PVV2 3000000000011234
E(K)(TSP

3) 6787FA69080E3C93
PVV3 6787
Will correctly witness the PIN.
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j = 1
VAL_DATA3,1 = 3000000000110001
OFFSET3,1 = 4324
PIN_verification call returned FALSE

...

j = 1234
VAL_DATA3,1 = 300000000011234
OFFSET3,1 = 5557
PIN verification call returned TRUE. Store j = 1234 as candidate for the

PIN.

...
 

Changing the decimalization table and calling the offset verify function again can eliminate some false 

witnesses (the digits 0 to 9 must remain mapped to themselves).  For example, let n → n (n < 10), else 

n → n+1 mod 10 (n ≥ 10). 

3.5.7.1. Work Factor 

The inner loop of the algorithm requires 10000 calls to the offset verify function plus the initial search 

for the PVV, which requires a further 5000 calls on average (10000 maximum).  The outer loop needs 

to run 7 times on average to witness the correct value of the PIN.  In practice, we run this loop 14 

times to eliminate false witnesses for a maximum possible total of 14  

queries. 

( ) 2800001000010000 =+⋅

3.5.8. Check Value Attack 

The check value function encrypts a 64 bit binary zero under the supplied key.  The PIN verify 

function (for IBM and GBP algorithms) encrypts a 64 bit user supplied validation data.  The resulting 

ciphertext is decimalised via a user supplied decimalization table and termed the intermediate PIN 

(IPIN).  The offset is the result of subtracting the IPIN from the customer selected PIN modulo 10 

(OFFSET = PIN - IPIN modulo 10).  The key observation is the similarity in operation between the 

check value function and the verification function.   

 

Consider the case when the validation data is a 64 bit binary zero.  The result of the encryption stage is 

the same as the result from the check value call (or more accurately, the first n bytes are the same for a 

n byte check value).  The decimalization table is known, so it is trivial to calculate the IPIN value.  It 

is also possible to recover the value of the offset by exhaustive search (again using the verify 

function).  With knowledge of both the IPIN and offset, it is a trivial calculation to determine the PIN. 
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Algorithm: 

 

1. Calculate the check value of key 

2. Decimalise the check value and store as IPIN 

3. Search for the OFFSET (with validation data = 000000000000000) 

4. Return PIN = IPIN + OFFSET 

 

Example 
PIN 1234
PIN ver key 0505050505050505

Validation data 0000000000000000
Decimalization Table 0123456789012345
OFFSET(searched) 3034

Check Value 8CA0964
IPIN 8200 (= the check value decimalised)

Calculated PIN 1234 (= OFFSET + IPIN)
 

Some observations:  The attack (as always) accepts an encrypted PIN block and its associated 

(encrypted) PIN encrypting key.  The actual value of the PIN verification key is not important and 

hence one can merely conjure the key (if possible) or use any other PIN verification key in the system.   

 

3.5.8.1. Work Factor 

The attack is fairly efficient, requiring only a single call to the key test function (to obtain the check 

value) and a single search for the offset.  For an n digit PIN this requires at most 10n queries (although 

it may be possible to reduce this to 104 + (n-4)•10 queries using the method described in Section 

3.5.5.2). 

3.6. Analysis of the Commercial APIs 

3.7. Real World Implications. 

The question that begs asking is whether these attacks are a credible real world threat.  The first 

comment that should be made (and typically the first response from a vendor susceptible to a newly 

published vulnerability [IBM01]) is that real world systems should be following standard industry best 

practices that, if implemented correctly and enforced, should limit a potential hacker’s ability to 

perform such attacks.  This is typically taken to mean the use of physical access control and operation 
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procedures to restrict access to the security devices.  This defence is correct in that an attacker does 

require some form of query access to the device (whether it be physical or remote electronic access) in 

order to effect the attack. 

 

However there are some observations and counter arguments that question the validity of this defence.  

The first is that an attacker can attack at weakest point.  By the nature of the financial systems’ 

architecture, this means that one institution’s account holder can be compromised on another 

institution’s network (i.e., as the encrypted PIN travels through the network belonging to a different 

institution, it may be attacked).  Hence one must guarantee that all potential networks through which 

the PIN may travel are secure.  Can one realistically expect, claim or prove that all possible 

institutions in all cases correctly implemented and observed the required best practices?  And how 

would one justify buying an expensive tamper resistant security module in the first place if one’s 

defence rests on physical access control? 

 

In addition, these devices now find use in other environments such as multi-lane retail stores where 

they are used as concentrators for the EFTPOS devices in the store.  While it may be reasonable to 

expect a financial institution to have the necessary rigorous controls in place, it may not be necessarily 

be the case in a high volume, public store. 

 

Finally, there is an implied assumption as to the impenetrability of the network in discounting the 

possibility of a remote attack.  A traditional hacker gaining access to host with a security device could 

easily implement the attack. 

3.8. Solutions 

 

So what went wrong?  Firstly, it is clear that a number of functions were just badly thought out and are 

insecure.  The ease with which decimalization tables can be manipulated is perhaps a good example.  

Secondly, individually secure functions were added to the API in a manner to make the entire system 

insecure. The use of check digits function to compromise the verification algorithm is a classic 

example.  Insufficient attention was given to the possible interplay between functions such as the key 

separation with competing verification algorithms.  Finally, the absence of a single standard, to which 

everyone completely adheres, contributed to the complexity of the system, creating opportunities to 

exploit (e.g. the many different formats and algorithms that exist due to historical reasons).  Saying 

this, it is difficult for a vendor to restrict functionality when different customers want different 

functionality from the same product. 
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Our proposed solutions are the following. 

 

1. Remove ‘weaker’ algorithms and functions and adhere to a single standard  

When there is a choice between algorithms that effectively provide the same functionality, the 

weaker one should be removed.  By leaving only the strongest function the level of security has 

immediately been increased.  This approach complements the goal of supporting only a single 

standard to the exclusion of everything else.  It reduces the possibility to interaction between 

algorithms. 

 

2. Parameter (data) Integrity 

Many of the attacks exploit the possibility of modifying input parameters to the functions 

(including, amongst others, the PAN, the PIN block format, decimalization tables, validation 

data, transformed security parameter (TSP), etc).  Encrypting the parameters offers a possible 

solution.  However perhaps the most logical solution is to include the use of MACs (or similar 

methods) to ensure data integrity.  For example, a decimalization table is supplied to a function 

call along with a MAC and the key for verifying that MAC.  It may be natural to expand the 

PIN block, adding fields to include the PAN and PIN block format and a MAC over the entire 

PIN block (or encrypted hash).  A clever solution to enforcing the correct PIN block format is 

the use of an additional control vector that is unique per PIN block format.  This is exclusive-

ored to the key before use.  This method known as PIN block variance control was found in an 

earlier IBM API known as ICSF.  The advent of AES may provide an option for extending the 

PIN block owing to its increase block size (128 bits instead of 64).  As a result, a PIN block of 

the form Length||PIN||PAD||PAN||Format could be used, eliminating many of the problems. 

 

These solutions are fairly obvious.  The challenge comes in ensuring interoperability between 

devices from different manufacturers. 

 

 

3. Key Separation 

 

Key separation is of vital importance.  As mentioned before, it is a well-understood principle.  

Failure is typically either as a result of a design or implementation oversight or alternatively as a 

lack of understanding of the extent of separation required. 
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While implementation oversights are potentially inevitable (and not limited to key separation 

issues) they can be addressed through training and peer review.  A structured and complete 

approach is required to identify possible areas of compromise in design where there exists the 

possibility of compromising interactions. 

 

Similar functionality (such as slightly different PIN verification algorithms) is often naively 

grouped together, for example as parameterised functions or supporting the same key types.  

While this may seem intuitively acceptable, in our analysis we have shown this be a source of 

separation issues.  Separation must be extremely fine grained down to the individual algorithm 

level and the design must resist the temptation to categorize on a more general level.  In the case 

of PIN verification, this means that keys must be identified and restricted for use with only a 

single verification algorithm as opposed to the current common practice of being useable with a 

number of algorithms.  Likewise a distinction between PIN encrypting and PIN verification 

keys must be enforced. 

 

The use of PIN block variance (essentially a key separation mechanism that relates PIN block 

format to the key) is a useful method offering the fine-grained restrictions required of an API. 

 

4. Electronic access control 

The benefit of electronic access control cannot be overstated.  It should be fine grained, 

allowing the individual enablement/disablement of: 

• formats, 

• algorithms, and 

• functions. 

 

Whenever working with access control one must observe the mantra of permitting only the 

barest minimum required functionality. Start by disabling everything.  Then enable only what is 

required. 

 

Access control has the exceptionally useful property of being able to disable (or remove) a 

function that has been shown to be insecure.  As such it provides an immediate defensive 

response by removing vulnerability in the device.  It can also be effective in enforcing dual 

control. 

 

5. Implementation 
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As has already been alluded to, a number of issues can arise as a result on implementation errors 

and oversights.  Building a system that is expected to withstand a high level of malicious or ‘out 

of specification’ operation by malicious users, is a complex and challenging task and famously 

referred to as ‘Programming Satan’s computer’ [AN95].  An engineering or development team 

working on such an assignment requires an emphasis on security priorities and quality control 

which at the very minimum requires specialized training and a submission to peer review. 

3.9. Hackers and Threats: Real World Scenarios 

We diverge briefly from the theoretical analysis of API vulnerabilities to explore the exploitation 

thereof and the impact of such failures in the real world.  Thus we present a series of scenarios in 

which we leverage our knowledge to attack financial institutions and their account holders. 

3.9.1. Insider Attack 

The insider attack is the first and obvious attack arising from the weaknesses in the standard financial 

API.  It presupposes the existence of an ‘insider’ who is either a person internal to a given financial 

institution (e.g. employee, contractor, cleaning staff, etc) or else an individual who has gained access 

to the financial network, perhaps through some traditional network hacking technique.  This attacker 

either has knowledge of the attack methods described or else has downloaded exploit code available 

on the Internet.  He begins by monitoring the transaction stream for a period, recording the encrypted 

PIN blocks and associated account numbers that pass through the system.  Using the exploit code, the 

clear PIN numbers are extracted through a sequence of queries against the hardware security module.  

Having obtained a list of account numbers (and other information) along with the associated PIN 

numbers, the attacker surreptitiously leaves the scene of the attack. 

 

To exploit this list, the attacker purchases a set of ‘white cards’ (blank cards without any silkscreen 

logo) and a card reader/writer (available as a combined package on the internet for $595 [HH]).  He 

then writes the account information for each harvested account onto a card, creating in effect a 

duplicate card of the original card still in the customer’s possession.  He distributes these cards to a 

network of accomplices (perhaps a gang of street kids) and encourages them to perform a random tour 

of ATMs in the area.  The instruction is that each card be used once a day, at a random ATM and used 

to withdraw the estimated daily withdrawal limit. 

 

Let  be the number of compromised accounts, n p  the average period before unnatural transaction 

behaviour is noticed and l  the daily withdrawal limit.  The total fraud value is . lpnF ⋅⋅=
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Example: 

5000=n  

2=p  

1000$=l  

Total Fraud = $ 10,000,000 

 

Harvesting a large number of accounts (like the 5000 in our example) is trivial due to the efficiency of 

the attacks.  A Trojan or piece of software could harvest many millions of accounts over just a few 

days – limited only by the transaction throughput.  Log files could potentially provide an immediate 

and large source of encrypted PIN blocks.   

 

There exist other possible methods to extract monies from the compromised accounts such as the use 

of Internet banking or account transfers.  However, with the exception of bill numbers on the currency, 

there is limited ability to trace the money after the attack.  Regardless of the method employed, a wise 

adversary would immediately launder the money. 

 

3.9.2. Account Holder Attack 

While the insider attack was the work of a third party that defrauded an account holder, this attack 

provides a mechanism for the account holder to defraud the institution.  The malicious account holder 

first produces a number of duplicate ‘white cards’ of his own card.  These he distributes to multiple 

accomplices, preferably in different geographical locations and instructs them to perform a random 

tour of the ATMs in the region.  Upon receiving the first bank statement with these transactions on 

them, he immediately reports the ‘unauthorized’ activity on his account and disputes the transactions. 

 

A first point is that it may be advisable for the malicious account holder to perform a valid transaction 

“simultaneously” with the fraudulent ones since this ‘proves’ that the account holder is in possession 

of his card at the same time as the fraudulent transaction occurred and preferably was in a different 

physical location.  This provides fairly significant circumstantial evidence that the account holder was 

not involved in the fraud. 

 

Extending this further, it is best done by multiple cardholders from a given institution since 

1. it shows that it was not an isolated incident, 

2. hence raises questions the security of the institution and 
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3. gives the impression of a possible insider attack. 

 

Again let  be the number of compromised accounts, n p  the average period before unnatural 

transaction behaviour is noticed and l  the daily withdrawal limit.  The total fraud value is 

 and the average return per individual is  lpnF ⋅⋅= l⋅pR =

 

Example: 

100=n  

10=p  

1000$=l  

Total Fraud = $ 1,000,000 

Average return = $ 10,000 

 

3.9.3. The Repudiation Attack 

The repudiation attack is an extension of the account holder attack.  Here the malicious account holder 

simple denies a transaction.  This will result in the bank’s normal dispute resolution procedure being 

followed leading to possible litigation.  The attacker will disown the transaction and claim that it must 

be an error on the bank’s part or deliberate fraud and argue the insecurity of the system.  The approach 

is best if the security of the institution has already been questioned. 

 

For example, following a successful account holder or insider attack being made public – other 

account holders (acting individually) may dispute valid transactions that occurred during (or after) the 

attack period.  The financial risk is great due to the possible scale (e.g. 0.1 % of an institution’s 

1,000,000 customers each disputing a $1000 transaction would result in a combined value of  

$1,000,000). 

 

Perhaps more significant would be the loss of confidence in the given institution which could well be 

more damaging than any dollar loss.  This leads us to some other approaches to benefit from these 

attacks. 
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3.9.4. The Competitor Attack 

As mentioned earlier, an account holder is able to use his or her card on networks other than the 

account issuing bank’s network.  As a result, an account holder can be attacked on any network 

through which his PIN travels.  This includes competitors’ networks.   

 

Thus a competitor could choose to mount an attack against account holders of a particular institution.  

In addition, as administrator of their own network, is it possible for them to use the additional benefits 

and powers that are associated with administrator privileges to effect this.  Combined with unlimited 

time and access, the success of the attack is guaranteed. 

 

However, the reward is not the stolen money but rather the ‘after effects’.  The negative publicity and 

damage to customer relationships that would arise after such an attack could destroy a bank’s 

credibility and customer base.  This resulting fall out would benefit the competitor.  This has the 

advantage that there is less of a connection between accomplices and the attacker (in this case the 

competitor institution).  There is no incriminating cash trail leading back to the attacker and no need 

for laundering.  In addition, the effective monetary value of the reward could be considerable. 

3.9.5. The Stock Market Attack 

In another variation that eliminates the cash trail and potentially increases the value of the reward, the 

attacker sells the stock ‘short’ prior to any attack (a stock market strategy that pays off should the 

stock price fall).  The negative after effects could contribute to a dramatic decrease in stock price. 

3.9.6. The Anarchist Attack 

With the goal of creating confusion and disorder in the world’s financial institutions, an anarchist 

would employ all and any combinations of all the previous attacks. 

 

3.10. Looking Ahead 

 

Question: How can a bank guard against such attacks? 

Answer:  The bank should: 

1. Contact its vendor, request any best practices information and implement it. 

2. Be vigilant.  Increase its auditing. 

3. Reassure its clients. 
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4. Wait. 

5. Apply positive pressure on the role players. 

 

 

Question :Is that all?  Why can the bank not just solve the problem? 

Answer: 

The nature of the problem is such that it is not a single bank’s alone (unless it disconnects from the 

network).  The entire network must be secured and until that happens the bank and its account holders 

are potentially vulnerable. 

 

3.10.1. The Road Ahead? 

It is envisaged that the process will be driven by the card associations (i.e., VISA, MasterCard, etc).  

This is due to their role and influence over the infrastructure.  There should be a revision of the 

associated standards involving new design and security requirements.  These requirements could be 

very prescriptive, limiting what functionality is allowed.  Following a finalization of the standards, the 

vendors will then update products.  Hopefully this will provide an opportunity for more uniformity 

and collaboration between different vendor product offerings. (This would makes business sense for 

institutions, given them more flexibility, choice and bargaining power).  Finally, the card associations 

will mandate the new requirements to member institutions. 

 

3.11. The Unanswered Question 

Who is liable in the event of such an attack leading to fraud? 
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