

Funzioni hash: sicurezza

- O Sicurezza forte: computazionalmente difficile trovare 2 diversi messaggi con lo stesso valore hash
- O Sicurezza debole: dato M è computazionalmente difficile trovare un altro M' tale che h(M) = h(M')
- O One-way: dato y è computazionalmente difficile trovare M tale che y = h(M)

Funzioni Hash

Sicurezza forte \Rightarrow One-way

- O h: $X \rightarrow Z$ funzione hash, $|X| \ge 2 \cdot |Z|$
- O Supponiamo ALG un algoritmo di inversione per h
- O ... allora esiste un algoritmo Las Vegas che trova collisioni con probabilità ≥ 1/2

Funzioni Hash

Sicurezza forte \Rightarrow One-way

- O h: $X \rightarrow Z$ funzione hash, $|X| \ge 2 \cdot |Z|$
- O Supponiamo ALG un algoritmo di inversione per h
- O ... allora esiste un algoritmo *Las Vegas* che trova collisioni con probabilità ≥ 1/2

Scegli a caso x in X $z \leftarrow h(x)$ $x' \leftarrow \mathbf{ALG}(z)$ If $x' \neq x$ then x' ed x è una collisione
else fallito Funzioni Hash

Sicurezza forte \Rightarrow One-way

$$\begin{split} & \operatorname{Prob}(\operatorname{successo}) \ = \sum\nolimits_{x \in X} & \operatorname{Prob}(\operatorname{successo}|x) \cdot \operatorname{Prob}(\operatorname{scelgo} x) \\ & = \frac{1}{|X|} \sum\nolimits_{x \in X} \frac{|[x]| - 1}{|[x]|} \quad \boxed{[x] = \{x' \in X : x \sim x'\}} \\ & = \frac{1}{|X|} \sum\nolimits_{c \in C} \sum\nolimits_{x \in C} \frac{|c| - 1}{|c|} \quad \boxed{C = \{[x] : x \in X\}} \\ & = \frac{1}{|X|} \sum\nolimits_{c \in C} \left(|c| - 1\right) \ = \frac{1}{|X|} \left(\sum\nolimits_{c \in C} |c| - \sum\nolimits_{c \in C} 1\right) \\ & \geq \frac{|X| - |Z|}{|X|} \geq \frac{|X| - |X|/2}{|X|} \ = \frac{1}{2} \end{split}$$

One-way e Sicurezza forte

 $g{:}\{0{,}1\}^* {\:\rightarrow\:} \{0{,}1\}^b \;$ funzione hash, prop. sicurezza forte

$$h(x) = \begin{cases} 1 \circ x & \text{se } |x| = b \text{ bi} \\ 0 \circ g(x) & \text{altrimenti} \end{cases}$$

 $h: \{0,1\}^* \to \{0,1\}^{b+1}$ è una funzione hash

- sicurezza forte
- non è "sempre" one-way

Funzioni Hash

Paradosso del compleanno

Quante persone scegliere a caso affinchè, con probabilità ≥ 0.5, ci siano almeno due con lo stesso compleanno?

Funzioni Hash

Paradosso del compleanno

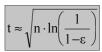
Quante persone scegliere a caso affinchè, con probabilità ≥ 0.5, ci siano almeno due con lo stesso compleanno?

Risposta: bastano 23 persone!

Funzioni Hash

Paradosso del compleanno

Scegliamo a caso elementi in un insieme di cardinalità n. Quanti elementi scegliere se si vuole che la probabilità che ci siano almeno due elementi uguali sia ε?



Funzioni Hash

13

Paradosso del compleanno

Scegliamo a caso 2 elementi z_1, z_2 in un insieme di cardinalità n Probabilità che sono diversi

Prob(
$$z_2 \neq z_1$$
) = 1 - Prob($z_2 = z_1$)
= 1 - 1/n

Funzioni Ha sh

Paradosso del compleanno

Scegliamo a caso 2 elementi z_1, z_2 in un insieme di cardinalità n. Probabilità che sono diversi

Prob(
$$z_2 \neq z_1$$
) = 1 - 1/n

Scegliamo a caso 3 elementi z_1, z_2, z_3 in un insieme di cardinalità n. Probabilità che sono diversi

Prob($z_3 \neq z_1 \land z_3 \neq z_2 | z_2 \neq z_1$) ·Prob($z_2 \neq z_1$) = (1-2/n) (1 - 1/n)

Funzioni Hash 15

Paradosso del compleanno

Scegliamo a caso z_1, z_2, \dots, z_t in un insieme di cardinalità n Probabilità che sono diversi

$$Prob(\;z_{\;1},\!z_{\;2},\ldots,\!z_{\;t}\;diversi\;) = \;(1\;\text{--}\;(t\text{--}1)/n)\;\cdot\;\ldots\;\;\cdot(1\text{--}2/n)\;\cdot(1\;\text{--}\;1/n)$$

Per piccoli x abbiamo $1-x \approx e^{-x}$

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

Funzioni Hash

Paradosso del compleanno

Scegliamo a caso z_1, z_2, \dots, z_t in un insieme di cardinalità n. Probabilità che sono diversi

Prob(
$$z_1, z_2, ..., z_t$$
 diversi) = $\prod_{i=1}^{t-1} \left(1 - \frac{i}{n}\right)$
 $\approx \prod_{i=1}^{t-1} \left(e^{-i/n}\right)$

Per piccoli x abbiamo $1-x \approx e^{-x}$

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$
Funzioni Hash

Paradosso del compleanno

Scegliamo a caso z_1, z_2, \dots, z_t in un insieme di cardinalità n Probabilità che sono diversi

Prob(
$$z_1, z_2, ..., z_t$$
 diversi $) = \prod_{i=1}^{t-1} \left(1 - \frac{i}{n} \right)$

$$\approx \prod_{i=1}^{t-1} \left(e^{-i/n} \right)$$

$$\approx e^{-t(t-1)/(2\pi)}$$

 $\epsilon \triangle \text{Prob}(\text{ almeno una collisione tra } z_1, z_2, ..., z_t)$ $\approx 1 - e^{-t(t-1)/n}$

Funzioni Hash

Paradosso del compleanno

 $\varepsilon \triangle \text{ Prob}(\text{ almeno una collisione tra } z_1, z_2, \dots, z_t)$

$$\begin{split} 1 - \epsilon &\approx e^{-t(t-1)/(2n)} \\ &\frac{-t(t-1)}{2n} \approx ln(1-\epsilon) \\ &t^2 - t \approx 2n \cdot ln \frac{1}{1-\epsilon} \\ &t \approx \sqrt{n \cdot 2ln \frac{1}{1-\epsilon}} \end{split}$$

Funzioni Hash

Paradosso del compleanno

Scegliamo a caso elementi in un insieme di cardinalità n. Quanti elementi scegliere se si vuole che la probabilità che ci siano almeno due elementi uguali sia ε?

$$t \approx \sqrt{n \cdot 2 \ln \left(\frac{1}{1 - \varepsilon}\right)}$$

Se $\varepsilon = 0.5$ allora $t \approx 1.17 \sqrt{n}$

Applicazione: n = 365 e $\epsilon = 0.5$ allora t = 22.3

Che relazione c'è con le funzioni hash?

Funzioni Hash

Attacco del compleanno

OScegliere t elementi a caso e calcolarne i valori hash.

O Quanti elementi scegliere per avere almeno una collisione? (Assumiamo preimagini uguali, caso migliore per chi sceglie h) OPer una fissata probabilità ε , t è circa \sqrt{n}

OSe $n = 2^{40}$ allora $t \approx 2^{20}$

OSe $n = 2^{128}$ allora $t \approx 2^{64}$

Funzioni Hash

Modello generale per funzioni hash iterate

Funzione hash input taglia fissata ==> taglia arbitraria Input M. Padding ed aggiunta della lunghezza di M. Si ottiene un messaggio con blocchi di taglia uguale $X_1X_2\dots X_n$

H₀ è una costante iniziale computazione Computazione di ... $H_i = f(X_i, H_{i-1})$. del valore hash Valore hash $H_n = f(X_n, H_{n-1})$

Sicurezza forte per f \improx Sicurezza forte per h

Idea della prova: una collisione per h implica una collisione per f Supponiamo di aver calcolato $M \neq M'$ tali che h(M) = h(M')Dopo il padding e l'aggiunta della lunghezza otteniamo

$$X_1X_2...X_n$$
 $X'_1X'_2...X'_m$

Assumiamo n = m

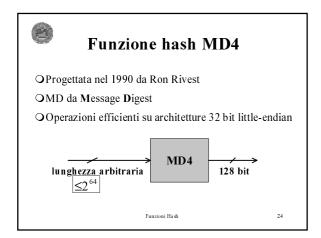
Nota che deve risultare $M \neq M' \Rightarrow X_1 X_2 ... X_n \neq X'_1 X'_2 ... X'_n$

Sia i tale che $f(X_i, H_{i-1}) = f(X'_i, H'_{i-1})$ ma $(X_i, H_{i-1}) \neq (X'_i, H'_{i-1})$

Trovata collisione per f!

Se n≠m, trovata collisione data la codifica finale della lunghezza $f(X_n, H_{n-1}) = f(X'_n, H'_{n-1}) \quad \ (X_n, H_{n-1}) \neq (X'_n, H'_{n-1})$

Funzioni Hash



Obiettivi di progettazione per MD4

- O Sicurezza forte: computazionalmente difficile trovare 2 messaggi con lo stesso valore hash
- O Sicurezza diretta: sicurezza non basata su problemi teorici difficili computazionalmente
- O Velocità: algoritmo adatto per implementazioni software molto veloci
- O Semplicità e Compattezza: semplice da descrivere e da implementare, nessun uso di tabelle e di complesse strutture dati

Funzioni Hash

MD4: padding del messaggio

- O MD4 processa il messaggio in blocchi di 512 bit Ogni blocco consta di 16 parole di 32 bit
- O M messaggio originario di b bit ⇒ padding

$$M' = M 100...0b$$
(447-b) mod 512 bit 64 bit

M' consta di un numero di bit multiplo di 512, ovvero di un numero di parole N multiplo di 16

Funzioni Hash

MD4: operazioni

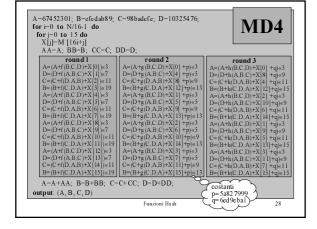
O Funzioni definite su parole di 32 bit: $\begin{array}{ll} \text{round 1: } f(X,Y,Z) = (X \wedge Y) \vee ((\neg X) \wedge Z) \\ \text{round 2: } g(X,Y,Z) = (X \wedge Z) \vee (Y \wedge Z) \vee (X \wedge Y) \\ \text{round 3: } h(X,Y,Z) = X \oplus Y \oplus Z \end{array}$

 $(if \ X \ then \ Y \ else \ Z)$ (2 su 3) (bit di parità)

Х	Υ	Z	f	g	h
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	1	1

- Ogni round consiste di 16 operazioni
- $\mathbf{O}\,X^+Y$ somma modulo $\,2^{32},\ X$ « s shift ciclico a sinistra di s bit

Funzioni Hash

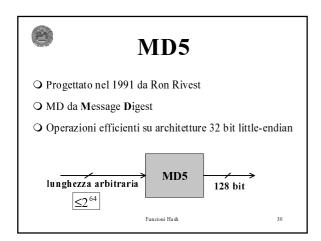


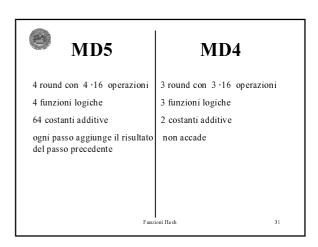
Sicurezza di MD4

MD4 è stato oggetto di molti attacchi

- crittoanalisi dei primi 2 round: Merkle ha provato che è facile trovare collisioni con round 3 omesso
- crittoanalisi degli ultimi 2 round: den Boer e Bosselaers [Crypto 91] hanno trovato collisioni con round 1 omesso
- Settembre 1995: Dobbertin [FSE '96] ha trovato collisioni per MD4 con un PC in pochi secondi

Funzioni Hash 29





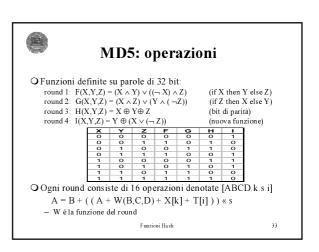
MD5: padding del messaggio

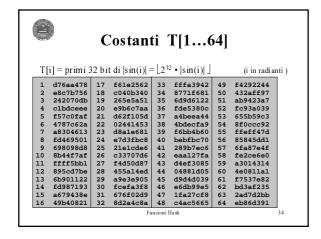
OMD5 processa il messaggio in blocchi di 512 bit Ogni blocco consta di 16 parole di 32 bit OM messaggio originario di b bit ⇒ padding

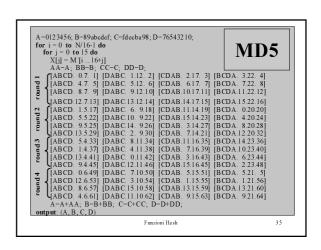
$$M' = M 100....0b$$
(447-b) mod 512 bit 64 bit

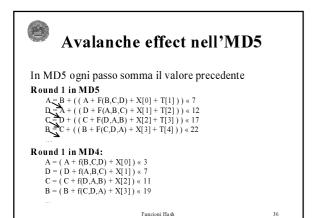
M' consta di un numero di bit multiplo di 512, ovvero di un numero di parole N multiplo di 16

Funzioni Hash









Little-endian e Big-endian

Come si trasformano sequenze di byte in parole di 32 bit? Conversione ambigua!

Sequenza byte B1, B2, B3, B4 nella parola W

Architetture Little-endian (come processori Intel 80xxx) byte con indirizzo più basso è quello meno significativo

valore parola W=2²⁴B4+ 2¹⁶B3+ 2⁸B2+ 2⁰B1

Architetture **Big-endian** (come SUN SPARCstation) byte con indirizzo più basso è quello più significativo

valore parola W=224B1+ 216B2+ 28B3+ 20B4

Funzioni Hash

SHA: padding del messaggio

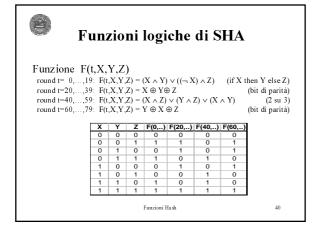
OSHA processa il messaggio in blocchi di 512 bit Ogni blocco consta di 16 parole di 32 bit OM messaggio originario di b bit ⇒ padding

$$M' = \boxed{M \ 100...0b}$$

(447-b) mod 512 bit 64 bit

M' consta di un numero di bit multiplo di 512, ovvero di un numero di parole N multiplo di 16

Funzioni Hash

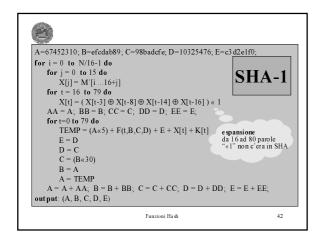


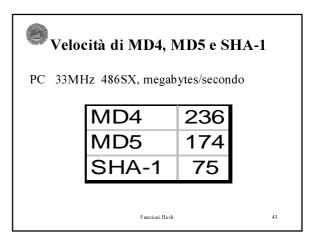
Costanti additive di SHA

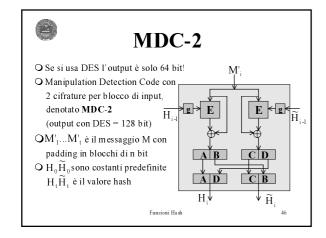
Costante additiva K[t]:

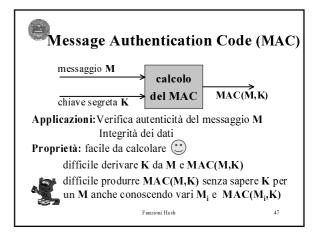
round t = 0,...,19: 5a827999 round t = 20,...,39: 6ed9eba1 round t = 40,...,59: 8f1bbcdc round t = 60,...,79: ca62c1d1

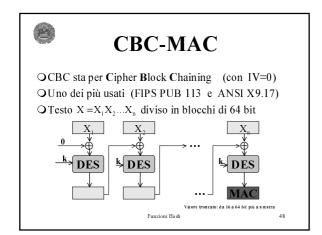
Funzioni Hash











Funzioni Hash