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Abstract
A secure and versatile key exchange protocol for key

management over Internet is presented. SKEME con-
stitutes a compact protocol that supports a variety of
realistic scenarios and security models over Internet.
It provides clear tradeo�s between security and perfor-
mance as required by the di�erent scenarios without
incurring in unnecessary system complexity. The pro-
tocol supports key exchange based on public key, key
distribution centers, or manual installation, and pro-
vides for fast and secure key refreshment. In addition,
SKEME selectively provides perfect forward secrecy, al-
lows for replaceability and negotiation of the under-
lying cryptographic primitives, and addresses privacy
issues as anonymity and repudiatability.

1 Introduction

The need to secure the Internet is now clear to
everyone. Consequently, more and more mechanisms
to provide security at di�erent layers and di�erent ap-
plications are being developed. Common to most of
these security mechanisms is the need for key man-
agement. One crucial component of key management
is the exchange of secret keys between two parties.
This is a basic enabler for the use of conventional
cryptography (based on shared secret keys) on which
most of the e�cient security solutions rely. This paper
presents the design of SKEME, a key exchange mecha-
nism which provides the scalability and exibility re-
quired by the growing Internet, and by the diversity
of scenarios that are part of it. Accommodating this
variety of scenarios and requirements, both in terms of
performance and security, into a simple and compact
protocol is the main challenge and accomplishment of
SKEME.

The design of SKEME has been mainly motivated
by the work carried through the IPSEC working group
of the IETF (Internet Engineering Task Force) which
is in charge of developing a standard and interoperable
key management protocol for Internet. This protocol
is intended to provide key management for the IP-
layer security protocols developed by the same work-
ing group (see [1]), but also to provide a key man-
agement solution for other security applications over
Internet. The currently proposed mechanism for key
exchange in this working group is the Photuris proto-
col designed by Phil Karn [17] which is similar to the

STS key exchange protocol of Di�e, van Oorschot,
and Wiener [11]. Photuris is designed to exchange
a key between two parties using public key and the
Di�e-Hellman key exchange [10]; it also addresses is-
sues like anonymity and denial-of-service attacks.

SKEME provides with the same basic functional-
ity of Photuris, it accommodates other trust models
(e.g., key distribution centers or manual installation),
and provides for exible tradeo�s between security and
performance (e.g., it allows for selective execution of
Di�e-Hellman, and for fast and frequent key refresh-
ment). Mostly importantly, the added features do not
require any signi�cant increase in protocol complex-
ity, or incur on any performance penalty. Because of
the many aspects that are common to Photuris and
SKEME, the later is not proposed to replace Photuris,
but to be merged with it in order to broaden and
strengthen the functionality of the protocol.

1.1 Protocol Overview and Design Ratio-
nale

The design of SKEME follows a set of requirements
and goals that are presented in detail in Section 2.
Here we briey overview these issues, and the basic
features of SKEME.

The central approach of SKEME is to provide with
a scalable and exible protocol capable of accommo-
dating many realistic scenarios in Internet, as well as
to provide with clear tradeo�s between security and
performance. The basic model that needs to be ad-
dressed is the public key model which is the most
scalable and has minimal trust requirements. The ba-
sic mode of SKEME provides, therefore, key exchange
based on public keys of the parties and the strong se-
curity of the Di�e-Hellman mechanism. The latter
has the great advantage of minimizing the negative
e�ects of the eventual exposure of long-lived keying
material (e.g., the exposure of the private keys of the
parties or a long-lived master key). This property of
the Di�e-Hellman protocol is referred to as perfect
forward secrecy (PFS) [11, 14].

However, SKEME does not limit itself to the combi-
nation of public key and Di�e-Hellman. It addresses
additional needs like, e.g., key exchange based on a
previously shared key between the parties. This sup-
ports many important and realistic scenarios which
include manual key installation and other forms of



shared master keys. Furthermore, it accommodates
key exchange in the Key Distribution Center model
(also known as the Kerberos model [20]), where the
parties share a key via a commonly-trusted center.
By using this key to authenticate a Di�e-Hellman ex-
change, rather than using it directly as a session key,
SKEME achieves a signi�cant security improvement by
reducing the trust required in the KDC.

SKEME also provides for more e�cient key ex-
change mechanisms for the cases in which the per-
fect forward secrecy property of the Di�e-Hellman
exchange can be relaxed, thus saving the signi�cant
computational cost associated with that mechanism.
Such cases include applications where authenticity of
information, rather than con�dentiality, is at stake,
or where the level of secrecy required is relatively low
(see Section 2.3.1). Finally, a very important goal of
SKEME is to provide with a mode to perform very
fast and frequent key refreshments. This has the ef-
fect of shortening the lives of cryptographic keys, thus
limiting the damage and potential of key exposure.

All of the above results in four modes of SKEME:

1. The basic mode which provides both public key
based key exchange and PFS (Di�e-Hellman).

2. Key exchange based on public keys but without
performing the Di�e-Hellman algorithm.

3. Key exchange based on a previously shared key
and provision of PFS.

4. Fast re-key mechanismbased on e�cient symmet-
ric key techniques only (e.g., MD5).

These four modes are folded into a single simple proto-
col, with a small set of messages, a well de�ned set of
options, and a compact representation. All of which
makes SKEME attractive from a system and imple-
mentation point of view.

A basic technical observation behind the design of
SKEME is that inmost common implementations (e.g.,
RSA), the performance cost of public key signatures
is similar to that of public key encryption. There-
fore, SKEME deviates from the approach of perform-
ing a Di�e-Hellman exchange authenticated via digi-
tal signatures (e.g., [11, 16, 17]). Instead, the protocol
�rst goes through a share phase in which the parties
share a key by mutually encrypting half-keys based on
the public key of each other, and then uses this key
to authenticate the Di�e-Hellman exchange (against
man-in-the-middle attacks). The later authentica-
tion utilizes e�cient operations only, e.g., MD5. In
this way the same functionality of Di�e-Hellman-plus-
signatures is obtained, but one gets \for free" (i.e.,
with no further computational cost) the share phase
where a key is shared by the parties. This allows for
the option of skipping the Di�e-Hellman phase (thus
providing mode 2 above), or skipping the share phase
(i.e., omitting the use of public keys) when the ex-
change is to be based in a previously shared key be-
tween the parties (mode 3). Finally by skipping both
the share phase and the Di�e-Hellman phase, a fast
re-key mechanism is obtained (mode 4). For the de-
tails, see the protocol description in Section 3.

In addition, SKEME provides for anonymity in the
sense that it prevents unnecessary disclosure of the
communicating identities (beyond what is strictly nec-
essary, e.g., IP addresses); it addresses further pri-
vacy issues by avoiding the use of digital signatures
and then allowing for \repudiation of communication"
(see Section 2.3.2); and it also provides certain de-
fenses against denial of service attacks (by adopting
the \cookies" technique of [17]).
Related work: Besides the works cited above, the
literature contains many references to protocols and
standards on key management in general and key ex-
change mechanisms in particular. We refer the reader
to the survey by Rueppel and van Oorschot [21] on key
exchange mechanisms, as well as to the forthcoming
book by Menezes, van Oorschot, and Vanstone (chap-
ter 12) [18]. Our work was mainly motivated by the
activities carried through the IPSEC working group in
the IETF, but we also note the suitability of our ap-
proach to the framework de�ned by IEEE 802.10 [15].
SKEME evolved as an extension of MKMP (modular
key management protocol) [9] where a modular ap-
proach to key management is suggested and a speci�c
module for key refreshment based on a shared key be-
tween the parties is presented. In general, SKEME

builds as much as possible, even for its public key
based modes, on the existing solid design and analysis
work developed for key exchange over the shared-key
model (cf. [19, 8, 4]).
Security analysis: A detailed and formal security
analysis of SKEME is beyond the scope of this paper
which is intended to describe the protocol design and
its rationale. However, for completeness, we include
an informal outline of a proof of security for all four
modes of the protocol. We base this outline on previ-
ous formal work developed for proving the security of
key exchange mechanisms in the shared-key model [4].
See Section 5. (We believe that the fact that the secu-
rity of SKEME can be related to that of protocols in
the shred-key model is another advantage of SKEME.
The shared-key model has been extensively studied
and we consider it simpler and better understood for
analysis than the general public key case.)
Organization of this paper: Section 2 describes
the main goals and requirements standing behind the
design of SKEME. Section 3 describes the protocol.
Section 4 highlights the main features of SKEME. Sec-
tion 5 argues about the security of the protocol. Fi-
nally, Section 6 provides some concluding remarks,
and comparison to Photuris.
A note on implementation: This paper presents
the basic design and rationale of the protocol. Im-
plementation of the protocol is underway; when com-
pleted more details and implementation experience
will be reported in a separate document.

2 Goals and Requirements

In this section we list some of the basic goals and
requirements behind the design of SKEME. It is not in-
tended as an exhaustive enumeration of requirements
for key management, but rather to emphasize the basic
properties required from a key exchange mechanism
for use in Internet, and to highlight the main features
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of the protocol proposed here. Many of these require-
ments are the result of the numerous discussions car-
ried in the IPSEC working group of the IETF.

The basic functionality of a key exchange mecha-
nism is to provide two communicating parties with a
common shared secret key that is known to these par-
ties only. One can think of this key as a master key
or session key depending on the life span of the key
or the semantics of the application. For the sake of
concreteness, we will often refer to the exchanged key
as a \session key".

2.1 Variety of Scenarios and Security
Models

One of the most demanding aspects of a security
protocol intended for use over the global Internet is
the variety and heterogeneity of scenarios and security
models existing in this medium. Any single model of
trust will be insu�cient to address the needs of key
management for Internet. Our protocol is therefore
designed to support a variety of these models while
keeping the system aspects of the protocol as simple
as possible.

Public Key Model. In the case of two parties that
possess the public keys of each other, the protocol is
required to establish a shared secret key between these
parties even if no prior shared secret existed between
them. The security of the protocol will then depend
on the authenticity of these public keys. The trust on
this authenticity will be based, in general, on the ex-
istence of some form of certi�cation mechanism that
can range from a global Certi�cation Authority to lo-
cal and distributed trust as in the PGP model [22]
(manual distribution of public-keys is also possible).
The advantage of the public key model is that it has
minimal third party trust requirements and, funda-
mentally, is the most scalable model for Internet.

Key Distribution Centers. A well established and
extensively used trust model is that of a key distribu-
tion center (KDC) [19]. This is the model popularized
by the Kerberos protocol [20]. Although it does not
have the scalability capability of the public key model
(because of the high level of trust required by the com-
municating parties on the on-line KDC), this model
cannot be ignored in a key management protocol for
Internet due to its usefulness in many scenarios (e.g,
corporate world), the e�ciency of symmetric cryptog-
raphy techniques on which it is based, and its existing
and extensive deployment. Actually, a well designed
key exchange protocol can strongly improve the secu-
rity provided by the KDC model by reducing the level
of trust required from the KDC. This issue is further
discussed in Section 2.3.1.

Manual Key Installation. Although it is the most
primitive way to install a shared key between two par-
ties, manual installation is still a common way to in-
stall initial keys in many systems. (It will be also
useful in the new scenarios created by Internet, e.g.,
a mobile user which shares a manually installed key
with its own o�ce's workstation, or with a �rewall.)
In this case, the use of a key exchange protocol that is
able to do periodic refreshment of keys and minimize

the security risk attached to long-lived master keys is
essential.

We note that the basic di�erence between the pub-
lic key case and the last two cases is the fact that
in the latter the key exchange protocol starts once a
shared secret key is already established between the
parties. Periodic key exchange based on previously
shared keys is useful also in the public key case, since
it allows for more e�cient, and then more frequent key
refreshment. The latter minimizes compromise of keys
via cryptanalysis (the more a key is used the more in-
formation the adversary has for breaking it) and limits
the harm of an exposed key by shortening its useful
life. In addition, key refreshment can minimize the
dependency between past and future keys (i.e., how
much can be learned from a compromised key about
past and future keys).

2.2 Basic Requirements
In addition to support the above di�erent models

we briey list here some of the properties SKEME is
required to support.

Secrecy and Authenticity. The protocol needs
to guarantee to the executing parties that only the in-
tended party learns the key exchanged and that this
key is fresh and unique. Secrecy and authenticity (of
the exchanged key) need to be protected against pas-
sive (eavesdroppers) and active (man-in-the-middle)
attackers, and these properties be guaranteed for as
long as the underlying cryptographic functions in use
(encryption, authentication, etc) are secure against
these adversaries. Not only the value of the exchanged
key is to be protected, but partial information on the
key should be hidden as well (except for known public

information like key length)1.
An additional security goal is to minimize the neg-

ative e�ects of a compromised key. Keys may be ex-
posed regardless of the security of the key exchange
protocol that generates them, e.g., by break-ins to a
system, poor secure storage management, and so on.
Mechanisms like independence between di�erent keys
in the system, frequent refreshment, and perfect for-
ward secrecy, as discussed below, address this goal.

Key Refreshment. The key exchange protocol
must provide automatic mechanisms to periodically
refresh keys. This needs to include low cost mecha-
nisms for very frequent key updates (say, each 5 min-
utes) and more costly and secure ones for less fre-
quent refreshments (say, each 3 hours). These di�er-
ent mechanisms will di�er in their performance cost
and degree of independence between the refreshed key
and past/future keys. Periodic refreshment of keys is
required to limit the damage caused by exposed ses-
sion keys and to reduce the amount of information

1Giving away even limited information about the key may
have severe security implications. As an example consider the
case where the exchanged key is later used as a one-time pad to
hide one of two possible strings: the all zeros string or the all
ones string (which may represent a con�dential yes/no informa-

tion); in this case, a single known bit in the key would reveal
the encrypted message.
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available for cryptanalysis (the latter is especially sig-
ni�cant when weak algorithms are in use, e.g. due to
performance or crypto regulations restrictions).

Perfect Forward Secrecy. Perfect forward se-
crecy (denoted PFS) is a central notion pertaining
key exchange protocols. It refers to the property that
\disclosure of long-term secret keying material does
not compromise the secrecy of exchanged keys from
earlier runs." [11]. This property has a central role
in our protocol and it is extensively discussed in Sec-
tion 2.3.1.

Key separation. Di�erent cryptographic functions
should use di�erent and cryptographically indepen-
dent keys (namely, the exposure of one key should not
compromise the other). This applies to the di�erent
functions used in the key exchange protocol itself as
well as to the cryptographic functions applied to data
during the subsequent session. In particular, one has
to be careful not to \re-use" the session key produced
by the protocol to key di�erent functions. (For exam-
ple, if the session key is used in the protocol to key a
hash function, say MD5, it should not be used to key
a data encryption algorithm later, say DES.) The rec-
ommended way to use the session key to derive keys
for di�erent cryptographic algorithms is to use this
session key as a \seed" from which other keys are de-
rived (e.g., through a pseudorandom or hash function
keyed with the session key and applied to a unique
identi�er of the algorithm).

Privacy and Anonymity. Communication over a
public and open network as the Internet not only re-
quires the hiding of information exchanged between
communicating parties but, in some cases, also the
hiding of the identity of the communicating parties.
This is not always possible: e.g., if a message carries
for its delivery the IP address of the intended Internet
host, or its originator, then that host can be identi�ed
from that information. However, in some other cases
the communicating parties (typically, the initiator of
a key exchange) can be hidden behind a temporary
IP address, e.g., a traveling individual which is pro-
vided with a temporary address in a remote system.
In such a case the sole information on the origin IP
address is not su�cient to identify the communicating
party. It is a goal of SKEME to protect this identity
from attackers on the net. Other forms of privacy con-
cerns exist, e.g., the protocol should not provide \non-
repudiatable proofs" that party A has been talking to
party B. The later is a real concern if digital signa-
tures are used for authentication in the protocol. See
further discussion of this issue in Section 2.3.2.

Clogging Attacks. The complete elimination of
denial of service attacks via ooding or clogging
against a host is virtually impossible. However, some
preventive measures can alleviate the problem. In the
case of protocols involving public key operations, the
opportunity for such attacks is increased due to the
high performance cost of these operations. In our
protocol we adopt a simple \cookies" technique in-
troduced by Phil Karn in his Photuris protocol [17]

in order to make it more di�cult for an adversary to
accomplish such an attack.

Performance. Key exchange operations may
strongly vary on their computation requirements de-
pending on the trust model and level of security re-
quired (compare an MD5 operation vs. an RSA sig-
nature). The protocol requires a careful design to
provide exible tradeo�s between security and perfor-
mance. The di�erent variants for key refreshment as
mentioned above are an example of these tradeo�s.
The amount of communication in the protocol is an-
other performance parameter to consider.

Multiple Security Models. The protocol should
support a variety of existing and widely used security
models, like manual key installation and key distrib-
ution centers. In addition it must support public key
based key distribution which is the only model to scale
to the dimensions of Internet. The latter must be sup-
ported all the way from manually installed certi�cates
to web of trust a la PGP to global certi�cation au-
thorities. These issues are discussed in more detail in
Section 2.1.

Algorithm Independence. The protocol needs to
de�ne the underlying cryptographic primitives in a
functional level (e.g., encryption, signature, etc.), but
not to depend on particular implementations (e.g.,
DES, RSA). Speci�c realizations of cryptographic
primitives should be replaceable. This would accom-
modate di�erent choices by di�erent parties to imple-
ment these primitives, and mostly importantly, would
allow for replacement of the algorithms in case of
cryptanalysis or the �nding of new and more secure
or e�cient algorithms. This is not to preclude the de-
�nition of default algorithms that may be required for
interoperability. Related to this issue is the need to
include in a complete key management protocol a ne-
gotiation mechanism through which parties agree on
particular security transforms and options of a proto-
col.

Exportability. The reality of existence of regula-
tions concerning import and export of cryptographic
technology in di�erent countries needs to be taken into
consideration. The goal is not to weaken the protocol
in order to make it exportable (as in the case of US
regulations) but to design it such that it does not con-
tain elements that will have to be unreasonably weak-
ened because of these regulations. One such example
is the avoidance, if possible, of mandatory symmetric
encryption in the protocol.

Minimize Protocol Complexity. The above set
of requirements, especially the need to support dif-
ferent security models and di�erent tradeo�s secu-
rity/performance may easily lead to a too complex
protocol with too many options, message formats, and
so on. In order to be acceptable and widely deployed
the protocol needs to keep a low system complex-
ity. This is the main challenge and accomplishment

of SKEME: It accommodates the stated requirements
through a small set of well-de�ned options, a uniform
message format for the di�erent options, and a com-
pact representation.

4



2.3 Discussion of Some Requirements
While many of the above requirements are clear and

do not necessitate much of an explanation, others are
less well-understood and sometimes controversial. We
elaborate on some of them here.

2.3.1 Perfect Forward Secrecy (PFS)

An important goal in a security design (especially key
management) is to limit the harm caused by the expo-
sure of keys. This is especially important for long-lived
keys. If the compromise of a single key exposes to the
attacker all the tra�c exchanged by a party during,
say, the last two years, such a key becomes an attrac-
tive target for an adversary, and a major bottleneck for
the system security. A far better design is to limit the
advantage for the attacker that breaks the key only to
future active impersonation attacks, where the poten-
tial of being detected is high. A key exchange mecha-
nism that protects short-lived keys from compromise
even in case of the exposure of long-lived keys, is said
to provide perfect forward secrecy (PFS) [11, 14].

If, for example, all session keys exchanged by a
party, A, are encrypted under A's public key, then
an attacker that breaks the private key of A would
also learn all past, and even future, session keys of
A. In contrast, by using the Di�e-Hellman algorithm
for key exchange and A's private key only to sign this
exchange, a much better level of security is achieved.
In that case, the attacker that compromises the pri-
vate key will be able to actively impersonate A in
future communications, but will learn nothing about
past communications, or even future ones in which the
attacker is not actively involved.

Therefore, PFS is, in general, a very desirable prop-
erty of a key exchange protocol. However, there is a
computational cost to achieve it. Practically speak-
ing, there is currently no other solution to provide this
property except for the Di�e-Hellman exchange (in
its di�erent realizations: �nite �elds, elliptic curves,
etc.)2 which requires two long (modular) exponenti-
ations for each party per exchange (one of which can
be done o�-line).

Due to this cost it is worthwhile asking if PFS is
necessary in all cases and all scenarios. Our answer is
no. PFS relates to secrecy of information. In some ap-
plications, however, authenticity rather than secrecy is
the goal. As an example, the Authentication Header
standard developed by the IETF [2] is intended to
provide for authentication of IP packets and headers
but not for con�dentiality. A server that provides
with non-con�dential but authenticated information
can use this authentication mechanism, but can dis-
pense of secrecy, let alone PFS. In such a case, it could
be unjusti�ed to overload this server with the unnec-
essary e�ort of performing Di�e-Hellman in each key
exchange (which may be required for each informa-
tion request). Services requiring authentication but

2In principle, any public key system can be used to achieve
such an exchange, including RSA. However, the latter would

require the generation of one-time RSA keys which is an unac-
ceptably expensive process.

not con�dentiality will be very common, e.g., a �le
server that authenticates �les (especially, executables)
for integrity, a web server providing non-con�dential
information, and so on. Other scenarios where PFS
may not be a requirement include cases where the
exchanged information is encrypted but its con�den-
tiality is limited to a very short period of time (e.g.,
timely �nancial information), cases where the encryp-
tion in use is weak (for exportability, performance,
etc.), or where the level of secrecy required is low (e.g.,
a DNS server that encrypts its responses for the sake
of anonymity only).

SKEME is designed to selectively provide with PFS.
It provides PFS as part of the basic SKEME protocol
based on public key, and for cases where the parties
perform key exchange based on long-term shared keys
(like a manually installed master key, a SKIP key de-
rived from long-lived public keys [3], and more). Fur-
thermore, SKEME can provide PFS for the case of
parties that share a common key via a key distribu-
tion center (KDC). In this case, SKEME would derive
a session key for the parties via a Di�e-Hellman ex-
change, while the KDC-provided key would be used
for authentication only. Thus, the compromise of the
key provided by the KDC (e.g., by breaking into the
KDC, or by malicious insiders) does not e�ect the se-
curity of information exchanged between the parties
using the Di�e-Hellman key (it may only allow the at-
tacker to mount limited active impersonation attacks).
In contrast, if the KDC-provided key is used directly
as a session key, its compromise would expose to the
attacker all the tra�c in that session. Therefore, pro-
viding PFS in this case strongly enhances security by
reducing the trust required by the parties on the KDC.

On the other hand, for those cases, as discussed
above, where the expense of a Di�e-Hellman exchange
is not justi�ed, SKEME provides with the option of
omitting this mechanism and still providing the par-
ties with a secret shared key. (To learn this key from
the protocol the attacker will need to compromise the
private keys of both parties). We consider the provision
of selective PFS as one of the important di�erentiat-
ing properties of SKEME relative to other proposed
key exchange mechanisms, e.g., [11, 17].

2.3.2 Privacy and the use of signatures

A natural approach to the design of a key exchange
protocol based on public keys is to use digital signa-
tures for authentication of the key exchange. Many
protocols do that, e.g., [11, 16, 17]. Here we point out
to some conict between use of signatures and pri-
vacy requirements. A basic property of digital signa-
tures is that they provide \non-repudiation"3, namely,
ifA has signed some information using her private key,
then anyone in possession of A's public key can verify
that A was the signer. This makes digital signatures
very useful in many scenarios, but also raises the fol-

3The term non-repudiation here does not necessarily imply
\legal liability", but just the ability to give to a third party a

strong evidence that the signed data originated with the signer.
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lowing privacy concern. If during a key exchange be-
tween parties A and B, A is required to sign B's iden-
tity, then this signature can be used later by B (or
any other party having that signature) to convince a
third party that A had been communicating with B.
The provision of such \proofs of communication" raise
a privacy concern even more serious than disclosing
identities over the network. Indeed, even if the iden-
tities are eavesdropped over the network, the eaves-
dropper cannot later provide convincing evidence to
a third party that she saw these identities. She could
provide that evidence, however, if these identities were
signed by the communicating parties. (Even if the sig-
natures are encrypted over the network, they can be
used by the recipient B to show that A has been com-
municating with him).

Therefore, if digital signatures are used in a key ex-
change protocol (where privacy protection is a require-
ment), then these signatures should not be used to sign
the identities. However, this will not prevent a mali-
cious party from encoding her own name into a piece
of information to be signed by the other party dur-
ing the protocol. This encoding can be done through
seemingly random nonces, or, in the case of a pro-
tocol signing Di�e-Hellman exponents, the encoding
can be done via these exponents. In addition, the use
of signatures imposes the need to encrypt these sig-
natures before transmission to prevent an adversary
from learning the identity of the sender just by check-
ing that the signature is consistent with the public key
of that party.

A better way to deal with these issues is to com-
pletely avoid the use of digital signatures in the pro-
tocol. The latter is the approach of SKEME. In our
protocol, public key operations are limited to encryp-
tion/decryption, while all authentication of informa-
tion by the parties is done through symmetric key
techniques which provide complete repudiatability of
the authenticated information, as well as avoids the
need to encrypt the authentication. (For alternative
public key-based exchange protocols that do not use
signatures see [21].)

3 The SKEME Protocol

In this section we present the SKEME protocol with
its basic phases and messages. The description is at
a high-level and omits some of the details in order
to concentrate on the basic security structure of the
protocol and the functionality it provides. We �rst
(x3.1) introduce some notation and the basic cryp-
tographic functions underlying the protocol. Then
(x3.2) we present the basic protocol which represents
its strongest mode and provides with full security
strength. Next (x3.3), the additional modes of SKEME

are described in which the basic protocol is accommo-
dated to provide exible security/performance trade-
o�s, and to support diverse security scenarios. Finally
(x3.4), the full protocol is presented where the above
modes are all combined into a single and compact rep-
resentation.

3.1 Cryptographic Primitives and Nota-
tion

Here we list the basic cryptographic functions used
in SKEME. We assume familiarity of the reader with
these basic functions and concepts. Public key encryp-
tion is used, but no speci�c algorithm is speci�ed or as-
sumed. RSA or El Gamal encryption are examples of
suitable algorithms. RSA is the most economic in the
sense that only the operation of decryption involves a
long modular exponentiation; encryption can be done
with a few modular multiplications. The assumption
on the security of the encryption is that it hides all
partial information on the encrypted data (formally,
we will assume semantic security of the encryption
function [13]). In particular, it is assumed that en-
cryption is randomized in the sense that the same
message encrypted twice would lead to di�erent en-
cryptions. When using RSA this may be achieved by
padding information with random salt before encryp-
tion, or more securely, by using the encoding scheme
proposed in [6]. We use PKEA(info) to denote the
(public key) encryption of info under the public key of
party A.

SKEME uses the Di�e-Hellman key exchange
algorithm4 [10]. For simplicity of notation, we will
denote the Di�e-Hellman exponents by gx mod p and
gy mod p which corresponds to the standard Di�e-
Hellman modulo a prime number p and generator
g. However, there is no assumption in the proto-
col related to this special form. In general, one can
use di�erent primes/generators for di�erent users, or
use Di�e-Hellman over other structures (e.g., ellip-
tic curves). Also for simplicity, we sometimes omit
the mod p notation.

SKEME requires the use of pseudorandom func-
tions, which are collections of keyed functions (like
DES or keyed-MD5) with the property that their out-
put (including individual bits of it) cannot be pre-
dicted by an adversary that does not possess the
key to the function. These functions (formalized in
[12]) extend the notion of pseudorandom generators,
and can be seen as providing \random access" to a
long pseudorandom string. In practice, pseudoran-
dom functions have realizations via DES and other
block cipher cryptosystems (in particular, can be ap-
plied to variable length input via CBC-MAC modes),
or via keyed one-way hash functions like keyed-MD5.
Two important properties of pseudorandom functions
is that revealing the result of such a function on a
set of inputs does not reveal information about the
value of the same function on a di�erent point, and
that they serve as secure MAC (message authentica-
tion codes). These functions are used in SKEME both
to provide data authentication (integrity) and as gen-
erators of keys. We denote a pseudorandom function
using key K by FK . In practical terms, one can think
of FK as keyed-MD5, DES-CBC-MAC, etc, and then
very e�cient to compute.

Finally, we need some further notation: H stands

4Any other exchange algorithmthat provides perfect forward

secrecy can be used instead of Di�e-Hellman; however, no such
practical algorithm seems to be known | see 2.3.1.
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for a strong one-way hash function, e.g., MD5, SHA.
The parties to the protocol are referred to as A and B,
where A acts as initiator, and their identities in the
protocol are denoted by idA, idB , respectively. The
output of the protocol, namely, the exchanged secret
(session key) key, is denoted SK.

3.2 The Basic Protocol and Its Phases

There are three basic phases in the protocol:
SHARE, EXCH, and AUTH. We �rst present these
basic phases in a way that provides the full security
capability of the protocol. This includes the sharing of
a secret key based only on public keys and the provi-
sion of perfect forward secrecy. We call this the basic
protocol. Later we show how these same phases with
di�erent parameters provide for the additional func-
tionality and tradeo�s of the protocol. In the actual
protocol messages of di�erent phases can be combined
to provide a more compact and communication e�-
cient scheme. Some details are omitted for the sake of
clarity of presentation.

Phase SHARE is intended to establish a key K0

between A and B based only on the parties having
the public key of each other. This phase by itself does
not authenticate the parties or the shared key K0. It
provides a very basic security level: If A follows the
protocol then she is assured that the shared key K0

is not known to anybody except B (though A does
not have the assurance that B knows the key). And
analogously for B. To be really meaningful this phase
needs to be combined with the other phases of the
protocol.

In SHARE the parties exchange \half-keys" en-
crypted under each other's public key and then com-
bine the half-keys via a hash function to produce K0.
(Exclusive-or of the two half-keys can be used instead
of hashing, but the hashing provides less opportunity
for B to arbitrarily inuence the key). The basic mes-
sage structure of SHARE is as follows:

SHARE:

A! B: PKEB(KA)
B ! A: PKEA(KB)
K0 = H(KA;KB)

When anonymity of the initiator, A, is desired then
the �rst ow will also encrypt A's identity.

A! B: PKEB(idA;KA)

If idA is too long, in particular if it includes A's pub-
lic key certi�cate, then a second key can be included
under the encryption, and idA transmitted encrypted
under this second key using a symmetric encryption
algorithm. (Notice that this would require use of sym-
metric encryption in the protocol. However this is
done only optionally and with no other security func-
tion than the hiding of identity/certi�cate of A). We
stress that the values KA and KB need to be chosen

as (pseudo-) random values, and fresh for each run of
the protocol. 5

The next phase, EXCH, is used to exchange Di�e-
Hellman exponents. Notice that this phase is indepen-
dent of SHARE.

EXCH:

A! B: gx mod p
B ! A: gy mod p

The above exponents gx, gy can be computed o�-
line by each party prior to the execution of the proto-
col.

The authentication of this Di�e-Hellman exchange
is accomplished in the following phase, AUTH, which
uses the shared key K0 from SHARE to authenticate
the Di�e-Hellman exponents. The combination of the
EXCH and AUTH phases provides the protocol with
the strong perfect forward secrecy (PFS) requirement.

AUTH:

A! B: FK0
(gy ; gx; idA; idB)

B ! A: FK0
(gx; gy; idB; idA)

Remember (Section 3.1) that FK0
represents a

pseudorandom function using key K0, and that such a
function (e.g., keyed-MD5, CBC-MAC) provides the
functionality of a MAC (i.e., message authentication).
The messages of this phase are intended to authenti-
cate the origin, the freshness, and the values of the
Di�e-Hellman exponents. Only after this phase is
completed, the parties have assurance that these val-
ues were chosen by their partner in the communica-
tion. Notice that the key K0 shared in the SHARE
phase can be known only to A and B (assuming their
private keys are not compromised) and then only these
parties could have generated the above authenticated
messages. The inclusion of gx in the �rst message
serves to authenticate (to B) that gx came from A;
the value gy in the same message is used to prove
to B the freshness of this message (assuming gy was
freshly chosen by B); �nally, the included identities
serve to reassure the parties about the correct bind-
ing between the exchanged key and their identities.
The second message has the same security functional-
ity relative to A.
Computation of the session key: The session key
SK, which is the key shared between A and B as
the result of this protocol, is computed by the par-
ties as SK = H(gxy mod p).6 Notice that this com-
putation (which involves an expensive on-line Di�e-

5An alternative to this public key-based SHARE phase is to
use long term Di�e-Hellman public keys as described in [10, 3].
In this case, the public key of a party is of the form gs mod p,

and s is the secret key. The key K0 used by two parties A and
B is computed as gsAsB mod p, where sA; sB are the private

keys of A and B, respectively. The main drawback of such a
key K0 is that it remains unchanged as long as the parties do
not change their public keys. For details on the use of Di�e-
Hellman public keys to establish a shared-key see [3].

6We recommend hashing the value gxy mod p for the pur-
pose of \extracting randomness" from all the bits of gxy. Other
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Hellman computation) can be completed after the pro-
tocol (thus, avoiding the consequent delay during the
protocol). The value itself of SK is not used in the key
exchange protocol. This saves the delay in the proto-
col that could be caused by this computation. The
authentication of the individual exponents gx and gy

guarantees the authenticity and uniqueness of SK.

3.2.1 Combining the Phases

The messages in the above phases have some level of
exibility as for their ordering and combination. For
example, the ordering of messages in phase EXCH can
be inverted, as is the case for messages in AUTH. In
phase SHARE, A is assumed to be the initiator and
then her message comes before B's. In some cases (dis-
cussed later) the order of phases SHARE and EXCH
can be reverted. For the sake of communication e�-
ciency, the above phases can be combined into three
message as described in Figure 1.

Notice that, as presented, the above protocol repre-
sents an opportunity for an adversary to mount denial-
of-service attacks against B, since B needs to perform
an expensive operation (public key decryption) even
before he knows to whom he is speaking, and before
A authenticates herself. Moreover, in order to force
B to decrypt the adversary does not need to perform
any expensive operation. This problem is addressed in
the Photuris protocol [17] via a technique called cook-
ies. The same technique can be used in our case, it
requires the performance of a COOKIES phase before
the SHARE phase. Its incorporation to our protocol is
straightforward and the details are omitted here. (We
refer to [17] for further motivation and description of
this technique).

3.3 Modes of the Protocol

As said earlier, the distinguishing feature of SKEME

is its capability to provide the di�erent tradeo�s be-
tween performance and security as required by the dif-
ferent security scenarios in Internet. The basic proto-
col as described in Section 3.2 provides the most gen-
eral solution in the sense that it accommodates the
public key model (which is the most general and scal-
able model) and achieves perfect forward secrecy, thus
providing the strongest level of secrecy even in case of
key compromise.

In this section we show some natural variations, or
modes, of the basic protocol that provide with the suit-
able level of security for scenarios where a secret key
is already shared between the communicating parties,
and those scenarios where the requirement of perfect
forward secrecy can be relaxed and, therefore, its high
computational cost be saved. (See Figures 2 and 3
for a combined and pictorial representation of these
modes.)

methods are possible, including using directly some of the bits
of gxy. However, notice that some of these bits, e.g. least sig-

ni�cant bit, are predictable given gx and gy. Another possible
method to compute SK is as SK = FK0

(gxy mod p).

3.3.1 SKEME Without PFS

In Section 2.3.1 di�erent scenarios where perfect for-
ward secrecy (PFS) may not be a requirement were
discussed. The mode of SKEME presented in this sec-
tion is intended to provide the key exchange function-
ality based on public keys of the parties, but without
paying the high performance cost required to achieve
PFS. This mode takes the advantage of the key K0

shared during the SHARE phase to produce a shared
session key.

This mode of SKEME is derived from the basic pro-
tocol of Section 3.2 by modifying the EXCH phase.
In this mode, the EXCH phase will be simply used
to exchange nonces between the parties. These are
(unstructured) random numbers freshly generated by
the parties and sent instead of the Di�e-Hellman ex-
ponents. These nonces are typically implemented as
pseudorandom bit strings of length 64-128. The re-
sultant phases EXCH and AUTH follow the known
techniques from the shared-key model originated with
[19], and further developed and analyzed in subse-
quent works (especially, [8, 4]).

EXCH:

A! B: nonceA
B ! A: nonceB

The AUTH phase is modi�ed accordingly to replace
gx and gy, with nonceA and nonceB , respectively, as
the FK0

arguments.

AUTH:

A! B: FK0
(nonceB ; nonceA; idA; idB)

B ! A: FK0
(nonceA; nonceB; idB; idA)

In this way the combination of EXCH and AUTH
provides the parties with the assurance that the key
K0 they shared through the SHARE phase is known
to both of them, and that the party they talked to
is the correct one (because only that party had the
private key required to decrypt the corresponding half-
key KA or KB). The nonces nonceA and nonceB act
as challenges to \prove" to each other the possession
of K0.
Computation of the session key: One could imag-
ine that the output of the protocol, i.e., the session
key SK to be shared between the parties would be
K0. However, since K0 is used in the protocol as
the key to the function F , it should not be output
as the session key, otherwise one would be giving
away some information on SK before it is even used7.
Therefore, instead of outputting SK = K0, we de�ne
SK to be FK0

(arg), where arg is the value sent in

7As an example, assume that the key is used later, in a
di�erent protocol, where one of the parties proves to the other
the possession of the key SK by just showing a pair (x;FSK(x))
for any value of x. Had the key SK never been used before then
the above would constitute a (one-time) proof of possession of

the key; however, doing that with SK = K0 would be insecure
since the key exchange protocol itself provides such a pair.
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A B

PKEB(idA;KA); gx

�

K0 := H(KA;KB)
PKEA(KB); gy; FK0

(gx; gy ; idB; idA)

�

K0 := H(KA;KB)
FK0

(gy; gx ; idA; idB)

�

SK := H(gxy mod p)

Figure 1: SKEME with public keys and PFS

the message from A to B in phase AUTH, namely,
arg = FK0

(nonceB ; nonceA; idA; idB). By the prop-
erties of pseudorandom functions the value of FK0

on arg is (computationally) independent of any other
value output by FK0

. Thus, the protocol provides no
information to an adversary on the value of SK.

Notice that in order to �nd SK from this mode of
SKEME, an adversary needs to actively impersonate
one of the parties (which may succeed only if the at-
tacker possesses the private key of that party), or to
be able to learn K0 by watching the communication
in the protocol. However, the latter requires know-
ing the private keys of both parties in order to decrypt
KA and KB . Notice that for a passive attacker (eaves-
dropper only) knowing only one of the private keys is
not su�cient. Therefore, although it does not provide
PFS, this mode of the protocol provides a signi�cant
level of security without incurring the expense of a
Di�e-Hellman exchange.

3.3.2 Pre-shared key and PFS

In this mode, the protocol assumes that the parties
already share a secret key, and that they use this key
in order to derive a new and fresh key (as discussed
in Section 2, this previously shared key could come
from a key distribution center, a manually installed
key, a long-lived shared master key, etc.). This mode
provides also with perfect forward secrecy (PFS), thus
ensuring the parties that even a future compromise of
their pre-shared key will not expose all the tra�c en-
crypted with keys derived from the exchanged session
keys.

In this mode of SKEME the SHARE phase can be
skipped and the pre-shared key used asK0. No further
modi�cation to the basic protocol of Section 3.2 is
required.

Computation of the session key: The computa-
tion is identical to that of the basic protocol, namely,
SK = H(gxy mod p).

3.3.3 Fast Re-Key

This is the fastest mode of SKEME. It is intended to
provide for very frequent key refreshment without go-
ing through expensive operations like public key or
Di�e-Hellman computations. It involves only fast op-
erations like MD5. It assumes the parties share a key
K0 from a previous round of the protocol and they
use that key to exchange a new one. The newly ex-
changed session key SK will have the property that
its exposure does not expose any prior keys (however,
an eventual exposure of K0 would compromise all ses-
sion keys exchanged under this mode due to its lack
of PFS).

In this mode the SHARE phase is omitted, and
the EXCH and AUTH phases are run as in Sec-
tion 3.3.1, namely, by exchanging nonces rather than
Di�e-Hellman exponents. (The resultant fast re-key
protocol follows the authentication and key exchange
techniques of [8, 4] based on symmetric key cryptog-
raphy only.)
Computation of the session key: Com-
putation of SK is identical to that of Sec-
tion 3.3.1, namely, SK = FK0

(arg), where arg =
FK0

(nonceB ; nonceA; idA; idB) is the value sent in the
message from A to B in phase AUTH.

3.4 The Combined Protocol
After having described the four modes of SKEME,

we present here the complete protocol in which all
these modes are combined into one uniform and com-
pact format. This combined protocol is shown in Fig-
ure 2 and the derivation of the di�erent modes of
SKEME is summarized in the table in Figure 3. The
inclusion in square brackets of the public key encryp-
tion pieces is done to stress that these elements are
omitted in some of the modes of the protocol.

Figure 3 shows the following information: mode
name, whether the public key encryption is per-
formed or not (in particular, whether the mode as-
sumes the existence of public keys of the parties or
not), whether Di�e-Hellman is performed (thus pro-
viding or not PFS), and the mode-dependent values
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of valueA; valueB , K0, and SK. Notice how the four
modes of the protocol depend on the selection to per-
form or not the expensive operations required by the
use of public keys (encryption) or to provide PFS
(Di�e-Hellman).

Figure 2 illustrates how the di�erent modes can
be implemented through a uniform set of messages.
Notice that the same message �eld can carry either
a nonce or a Di�e-Hellman exponent, depending on
the mode in use. These �elds need to be, in any
case, length-variable since the Di�e-Hellman expo-
nents may have di�erent lengths according to the re-
quired cryptographic strength. Also the �elds carrying
the public key encryption can be included or omitted
according to the mode (if omitted they can be con-
sidered a zero-length �eld). Finally, the agreement on
which mode of the protocol is to be used is part of the
negotiation between the parties which also includes
negotiation of speci�c security transforms.

Many implementation details are omitted here,
including system issues (e.g., exact formats, acks,
retransmission, security association identi�ers, etc.)
and cryptographic issues (e.g., o�-line/on-line Di�e-
Hellman computation, pseudorandom generation, for-
mat of public key encryption, derivation of multiple
keys, etc.). Also, details of negotiation of modes, op-
tions and speci�c cryptographic primitives are omit-
ted. All of these are beyond the scope of this paper
which focuses on the basic design issues and ratio-
nale. However, we stress here that no security design
is complete without a sound treatment of fault toler-
ance and error handling issues. We will further address
these aspects when reporting on our implementation
work. Many of the implementation details, however,
are common or similar to the Photuris protocol [17]
where some of them are already dealt with.

4 Summary of Main Features

SKEME is designed to achieve the requirements
listed and discussed in Section 2. In particular, to
provide support for the di�erent security scenarios
and to allow exible tradeo�s between security and
performance, while maintaining system complexity as
simple as possible. In this section we briey sum-
marize those features whose combination di�erentiates
SKEME from other proposed protocols (most notably,
the STS/Photuris protocols [11, 17]). See Sections 2
and 3 for more details on these features.
Public key-based key exchange. Provides key exchange
based on public keys, with and without PFS. In the
�rst case, an eavesdropper does not learn the ex-
changed key even if it knows both private keys of the
parties. In the latter, it requires the compromise of
both private keys in order to learn the exchanged ses-
sion key. Active impersonation of a party during the
protocol is possible only by an adversary that pos-
sesses the private key of the party.
Support manual installation and other long-lived mas-
ter keys. Supports key exchange based on a previously
shared key between the parties. It provides PFS to
this exchange in order to protect against information
disclosure in case of exposure of a long-lived key.

Key exchange based on KDC model. Keys can be ex-
changed based on a common key distributed to the
parties by a KDC. The security of the KDC model is
enhanced via the provision of PFS to the key exchange
(see Section 2.3.1).
Security. SKEME is designed to provide protection
against passive and active adversaries, including man-
in-the-middle and replay attacks (by using authenti-
cation and fresh randomness in each key exchange),
and to limit the damage from exposed keys. Session
keys do not leak information on other session keys (by
virtue of the use of pseudorandom functions for the
derivation of these keys), and even the e�ect of a com-
promised private key is limited. Such a compromise
would allow the attacker to actively impersonate the
compromised party, but will not allow that attacker
to learn past keys. Indeed, when the parties perform
a public key-based exchange without PFS, the adver-
sary needs to know both parties' private keys to learn
the keys. If the exchange includes PFS (i.e. Di�e-
Hellman) then the only way for the attacker to learn
a key is by actively impersonating the compromised
party during the exchange. Other security features,
like anonymity, privacy, and key separation are dis-
cussed in the sequel. See also Section 5 about the
security analysis of SKEME.
Selective PFS. Perfect forward secrecy via Di�e-
Hellman exchange provided as part of the basic pro-
tocol. It can be optionally omitted for the scenarios
where its cost or functionality is not justi�ed (see Sec-
tion 2.3.1).
Fast re-key. A fast re-key mechanism based on sym-
metric cryptography only is provided and intended for
very frequent refreshment of session keys in order to
shorten key lives.
Performance. The basic mode of SKEME provides the
best security functionality and is also the most ex-
pensive mode in the protocol. Using RSA for public
key encryption it involves, for each party, one long
exponentiation for decryption, and 2 exponentiations
(one o�-line) for Di�e-Hellman. In the pre-shared key
modes, the public key decryption operations are saved,
while in the share-only mode (without PFS) the two
exponentiations per party of Di�e-Hellman are saved.
The fastest mode is `fast re-key' which involves sym-
metric key operation only (MD5-like).
We stress that the cost of a Di�e-Hellman exchange
can be reduced by using short exponents. For mod
p implementations we recommend a bare minimum of
160 bits for the exponents (the values x and y in our
description), and preferably 256 bits8. Notice, also,
that in SKEME the computation of gxy can be per-
formed (or completed) after the end of the protocol
(since this value is not used by the protocol itself ex-
cept for the computation of SK). This avoids the in-
troduction of delays between protocol messages due to
this long computation9.

8As a preventive measure against partners to communica-
tion that use too short exponents (a fact that is hard to detect)
SKEME could use a key derived from the SHARE phase to en-
crypt the Di�e-Hellman exchange (cf. [7]).

9We stress that in contrast to some other protocols (e.g.,
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Figure 2: Combined SKEME Protocol

Mode PK DH valueA valueB K0 SK Comments

basic protocol Y Y gx gy H(KA;KB) H(gxy) PK+PFS

(full strength) (see Fig. 1)

share only Y N nonceA nonceB H(KA;KB) FK0
(arg) E�c (no DH)

(no PFS) No PFS

pre-shared N Y gx gy pre-shared H(gxy) omit PK, e.g.,

key (input to protocol) Kerberos+PFS

fast re-key N N nonceA nonceB pre-shared FK0
(arg) MD5-only

(input to protocol) no PK, no DH

Figure 3: SKEME Modes

Key separation. SKEME is carefully designed accord-
ing to the key separation principle (see Section 2.2).
SK is never used in the protocol. K0 is used in the
protocol only as a key to the function F . In the cases
where K0 is produced by the SHARE phase then we
know that K0 was not used before (and won't be used
beyond the protocol). However, in the modes where
K0 is input into the protocol (the pre-shared mode
and fast re-key) the implementation has to be careful
not to use this key outside the protocol for anything
else except keying the function F . (This would be sat-
is�ed if, e.g., K0 is freshly distributed by a KDC, or if
K0 is a key solely used in consecutive runs of the fast
re-key protocol.) As for the key SK, we recommend
not using it to directly key a cryptographic algorithm
applied to data during the session, but instead to use
SK to derive independent keys for the di�erent algo-
rithms used during the session. As an example if a
key for DES-CBC is required, then the key to be used
can be derived from FSK(des-cbc-id) where des-cbc-id
stands for a unique identi�er for this algorithm. We
note that there are ways to derive a variable number of

[11, 17]) there is no security or functional reason in SKEME

to prove possession of the session key by the parties during

the protocol. This possession is (implicitly) guaranteed by a
successful (i.e., errorless) completion of the protocol.

key bits using pseudorandom or keyed hash functions.
(Details are beyond the scope of the paper.)

Anonymity. The initiator,A, of the protocol may hide
her identity whenever the mandatory plain informa-
tion (e.g., IP address) is insu�cient to identify her.
This feature is achieved in a `natural' way by encrypt-
ing A's identity, in the �rst message, together with
the half-key exchange. This property is not provided
for key exchange based on previously shared keys; in
these cases, sending the parties identities is unneces-
sary since the parties identify themselves via IP ad-
dresses and previously exchanged security association
identi�ers. Identi�cation of the receiver is not dis-
closed by the protocol except for the necessarily trans-
mitted plain information (IP address).

Signature-less property. The protocol does not use
digital signatures. This avoids privacy issues as the
need to encrypt these signatures for anonymity, and
most importantly, avoids providing (forced) \proof-
s" of communication between the parties (see Sec-
tion 2.3.2). Notice that authentication is carried in
SKEME via MAC or pseudorandom functions, and
then it provides no useful proof of communication to
third parties.

Denial of service attacks. Potential clogging attacks
are alleviated through the cookies technique of [17].
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Use of symmetric encryption. There is no requirement
for use of symmetric encryption inside the protocol. It
may be optionally used to provide anonymity in the
case in which A transmits her own public key certi�-
cate to B in the �rst message of the protocol, but has
no other security implications.
Use of public key encryption. Our protocol uses public
key encryption to allow for key exchange without re-
curring to Di�e-Hellman (costly) algorithm. It is also
used as a replacement for signatures when running
Di�e-Hellman; in this case the key (K0) exchanged
through the use of encryption is used only for the pur-
pose of authentication. We note that public key en-
cryption is regulated in some countries. However, it is
generally allowed for use for the purpose of key distri-
bution, and as such subject to similar restrictions as
a Di�e-Hellman exchange. We note that security can
be enhanced by periodically renewing the public key
encryption keys; e.g., by self-certifying them using a
long-term certi�ed signature key.
Algorithm independence. The protocol requires sev-
eral cryptographic primitives, but does not depend on
any speci�c implementation of these primitives (only
on the basic requirements from these functions as spec-
i�ed in section 3.1.
Protocol complexity. In spite of the broad functionality
it provides, the protocol has a simple and compact
form. Di�erent modes are supported with a small and
uniform set of messages.

5 Security Analysis

Although this paper concentrates on the description
of the protocol and its requirements, and not on a de-
tailed security analysis, we present here some brief ar-
guments supporting the security of SKEME. (Our line
of analysis is based on generic security requirements
from the underlying cryptographic functions rather
than on speci�c implementations of these functions.
In this way we achieve true algorithm independence.)

We need to argue for the security of the four modes
of SKEME. The fast re-key mode (section 3.3.3) follows
the well-understood and analyzed protocols in [8, 4].
In particular, the paper by Bellare and Rogaway [4]
(see AKEP2 protocol in that paper), contains a rigor-
ous proof of security directly applicable to this mode
of SKEME. It follows that this mode is secure (for se-
crecy and authenticity) as long as the underlying cryp-
tographic primitives are secure in the sense de�ned in
section 3.1.

We argue that the analysis in [4] can be adapted to
prove the mode of SKEME (section 3.3.2) in which the
parties share a key K0 prior to the protocol and use
this key to authenticate the Di�e-Hellman exchange.
This protocol can be \mapped" to the protocols an-
alyzed in [4] by considering the Di�e-Hellman expo-
nents (gx and gy) as the nonces in the protocol. If
instead of generating the session key SK by H(gxy)
we would do it by applying the pseudorandom func-
tion FK0

to gxy, then the extension of the analysis of
[4] is straightforward. (A suggestion along these lines
was �rst made in [5].) There is no problem to modify
our description of the protocol to use FK0

as above.
On the other hand, the proof can be extended also

to the case SK = H(gxy), if we assume the Di�e-
Hellman conjecture on the unpredictability of H(gxy)
given gx and gy (a conjecture required anyway to claim
the perfect forward secrecy of the basic Di�e-Hellman
exchange).

The other two modes of SKEME are related to the
above. The di�erence is that instead of assuming
a pre-shared secret key K0 between the parties, it
is SKEME itself that generates this key through the
SHARE phase. That phase, by itself, does not guar-
antee anything except that if there are any parties
that know the key K0 = H(KA;KB) after the ex-
ecution of SHARE then those parties are A and/or
B. (This is implied by the security of the encryp-
tion function PKE.) Therefore, the premise that K0

is not known to anybody except for A and B, which
is the basis for the proof in the case of a pre-shared
key, holds here too. (We stress that the successful run
of the AUTH phase serves by itself as a con�rmation
that A and B indeed learned the key K0 through the
SHARE phase.) This is clearly an informal argument.
Formalizing these ideas requires extending the de�ni-
tions of security from the shared-key model to public
key. Based on such de�nitions, a formal proof would
show that any adversary that can break the security of
the protocol (by impersonation, learning information
on the key, etc.) can be transformed into an adver-
sary that is able to break (one or more of) the un-
derlying cryptographic functions (e.g., the public key
encryption, the pseudorandom function, etc.). Then,
the security of SKEME would follow from the security
of these cryptographic primitives.

Note: We have assumed as part of the above analy-
sis that the public Di�e-Hellman exponents (gx; gy)
exchanged between the parties can be seen as nonces.
This assumes that these public exponents are unique
per exchange. This is indeed very desirable since the
perfect forward secrecy property of the Di�e-Hellman
exchange calls for the destruction of the secret expo-
nent, say x, immediately after the Di�e-Hellman key
is computed. However, it has been suggested (e.g.,
[17]) that a party could reuse the same secret and pub-
lic exponent for di�erent exchanges during a relatively
short period of time (say, few minutes). The reason
for such reuse is to amortize the cost of computing the
exponentiation gx mod p over several exchanges. We
suggest the following strategy for an implementation
that wants to achieve these savings. It will periodically
generate gx mod p with a new x (say, each 5 minutes)
and will use gx mod p as the public exponent for the
�rst exchange in that period, gx+1 mod p for the sec-
ond, gx+2 mod p for the third, and so on. Each new
public exponent in this sequence costs a single modu-
lar multiplication but results in a fresh value (nonce)
for the sake of authentication. Moreover, two par-
ties that perform two successive exchanges in a short
period of time are guaranteed in this way to compute
di�erent Di�e-Hellman keys, and then completely dif-
ferent session keys (which are computed as the hash
value of these two di�erent Di�e-Hellman keys).
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6 Concluding Remarks

We have presented a secure and versatile protocol
for key exchange suitable to support a wide variety of
scenarios, security models, and security-performance
tradeo�s, as well as a detailed discussion of security
requirements for such a protocol. The main motiva-
tion for the present work has been the ongoing e�ort
in the Internet community to standarize key manage-
ment mechanisms to support secure IP (Internet Pro-
tocol). However, this work has applicability to many
other environments as well, e.g., the framework of
IEEE security protocols [15].

The protocol has many similarities, and some im-
portant di�erences, with Photuris [17], which is be-
ing developed through the IPSEC working group of
the IETF for the above purpose. Both protocols pro-
vide as their basis an authenticated Di�e-Hellman ex-
change based on public key. Photuris does it by �rst
performing a Di�e-Hellman exchange and then au-
thenticating it through the use of digital signatures
(similarly to the STS protocol of [11]). SKEME uses
public key encryption to exchange a one-time key and
then uses shared-key techniques to authenticate the
Di�e-Hellman exchange. An important advantage of
the SKEME approach is that it allows for selective per-
formance of the (expensive) Di�e-Hellmanoperations.
That is, in SKEME one can skip the Di�e-Hellman
phase and still have a key exchanged between the par-
ties; in Photuris that is not possible.

Photuris was originally designed with less function-
ality in mind than SKEME. One of the main motiva-
tions in developing SKEME (whose basic ideas were
�rst presented by this author through the IPSEC
working group) was to promote the addition to the
Photuris protocol of some of the elements presented
here. These elements include the support of shared-
key models (mainly, manual installation and key dis-
tribution centers) and the performance of cheap and
frequent re-key operations (based on fast symmetric
key techniques only). Some support for these aspects
has since then been added to Photuris. The latter
would be further bene�ted by the adoption of the
speci�c mechanisms provided in SKEME for the pre-
shared key modes, including fast re-key (mechanisms
which followwell-known and analyzed techniques from
previous works). In addition, the support in Photuris
for selective Di�e-Hellman performance is strongly
recommended.

Other advantages of SKEME over Photuris include
the provision of an anonymity mechanism which does
not require the use of symetric encryption and is se-
cure against active attackers (Photuris uses symetric
encryption to hide signatures and ceri�cates, and re-
lies on a non-authenticated Di�e-Hellman to derive
the key for this encryption), dispensing of digital sig-
natures (thus resolving the privacy issues raised by the
use of signatures), and freeing the protocol from delays
introduced by the costly computation of the Di�e-
Hellman key (SKEME can complete that computation
after the protocol execution, Photuris cannot since it
uses that key during the protocol itself). In addition,
we believe that SKEME is better suited for security
analysis using current analysis techniques, especially

since the analysis of SKEME can be strongly related to
the analysis work already developed for symetric key
protocols (see Section 5).

Finally, we stress that SKEME can be readily used
in conjunction with the SKIP protocol [3] (which has
also been proposed in the context of the IPSEC work-
ing group). The latter uses long-term Di�e-Hellman
public keys to derive long-term shared keys between
parties. These shared keys can be used in SKEME as
the key K0 (which can be cached or re-computed upon
use out of the Di�e-Hellman public keys). This would
provide SKIP with much of the security functionality
that it lacks now, especially perfect forward secrecy
and frequent interactive key refreshment.
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