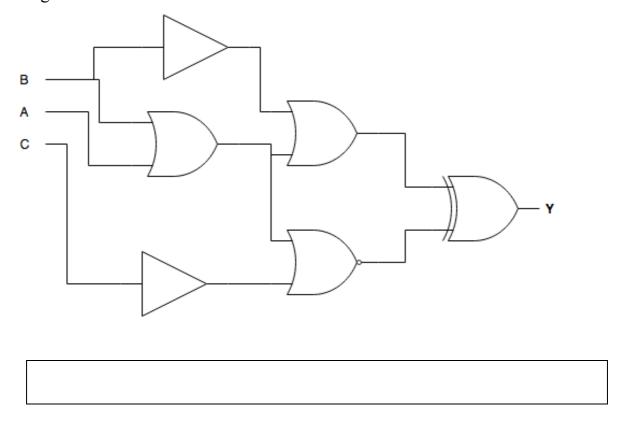
Prima Prova Intercorso

"Fondamenti di Informatica e Programmazione", A.A. 2017/18 Corso di Laurea in *Ingegneria Meccanica e Gestionale (Classe I)* Docente: C. Esposito

Cognome:				, Nome:										
				Mat	ricol	a:						_		
			Spe	azio i	riser	vato	alla	comn	nissio	ne esa	mina	atrice	?	
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	Q1	Q2	Q3	Totale
										stema sempli				risponde al 00_2):
		-		umero rappresentato nel sistema binario semplespresso nel sistema decimale come (111 ₁₀):	lice c	corrisponde								
		_								stema lue su			e com	risponde al

4. Un numero reale è rappresentato in virgola mobile secondo lo standard IEEE

- \bullet s = 1
- E = 10001001


754 su 32 bit nel seguente modo:

Ricavare il corrispondente valore decimale.

Prima Prova Intercorso "Fondamenti di Informatica e Programmazione", A.A. 2017/2018, Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) - Data: 27/10/2017

5.	Convertire il seguente numero decimale in virgola mobile in una rappresentazione binaria a singola precisione secondo lo standard IEEE 754: -899.125 ₁₀ .
6.	Si fornisca una rappresentazione grafica del circuito relativo alla seguente equazione logica $Z = A \cdot (\overline{A \oplus B}) + \overline{C}$:

7. Indicare quale espressione booleana è rappresenta dal seguente circuito logico:

8. Indicare quale espressione booleana rappresenta la seguente tavola di verità:

X	y	Z	w	F(x, y, w, z)
0	0	0	0	1
0	1	0	0	0
1	1	0	0	0
1	0	0	0	1
0	0	0	1	0
0	1	0	1	1
1	1	0	1	0
1	0	0	1	0
0	0	1	1	0
0	1	1	1	0
1	1	1	1	1
1	0	1	1	0
0	0	1	0	1
0	1	1	0	0
1	1	1	0	0
1	0	1	0	1

9. Indicare quale espressione booleana minima rappresenta la seguente tavola di verità impiegando le mappe di Karnaugh:

X	y	Z	W	F(x, y, w, z)
0	0	0	0	1
0	1	0	0	0
1	1	0	0	0
1	0	0	0	1
0	0	0	1	0
0	1	0	1	1
1	1	0	1	0
1	0	0	1	0
0	0	1	1	0
0	1	1	1	0
1	1	1	1	1
1	0	1	1	0
0	0	1	0	1
0	1	1	0	0
1	1	1	0	0
1	0	1	0	1

essere forniti in input dall'utente.					

- 12. Indicare cosa afferma la tesi di Church.
 - A. Una macchina di Turing è capace di eseguire qualunque calcolo;
 - B. Una funzione non calcolabile con una macchina di Turing non è implementabile in una macchina concreta;
 - C. Una macchina di Turing ha una limitata espressività di formalizzare algoritmi visto l'insieme limitato di operazioni supportate;
 - D. Un algoritmo è tutto quello che risulta computabile da una macchina di Turing, a partire dalle sue operazioni elementari.
- 13. Indicare cosa è un indirizzo IP.
 - A. Un identificativo univoco assegnato alla macchina dal produttore;
 - B. Un identificativo univoco della scheda di rete;
 - C. Un identificativo univoco di un host sulla rete;
 - D. Un identificativo alfanumerico facilmente memorizzabile dagli utenti.
- 14. Indicare cosa si intende per driver.
 - A. Il programma che controlla l'esecuzione della CPU;
 - B. Il core di un sistema operativo;
 - C. Un programma per utilizzare correttamente un dispositivo;
 - D. Un applicativo per la gestione di una coda di stampa.