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Abstract Best-response Mechanisms, introduced by Nisan et al. (2011), provide
a unifying framework for studying various distributed protocols in which the par-
ticipants are instructed to repeatedly best respond to each others’ strategies. Two
fundamental features of these mechanisms are convergence and incentive compat-
ibility. This work investigates convergence and incentive compatibility conditions
of such mechanisms when players are not guaranteed to always best respond but
they rather play an imperfect best-response strategy. That is, at every time step
every player deviates from the prescribed best-response strategy according to some
probability parameter. The results explain to what extent convergence and incentive
compatibility depend on the assumption that players never make mistakes, and how
robust such protocols are to “noise” or “mistakes”.

Keywords Game dynamics · Noise · Best-response · Convergence · Incentive
compatibility

1 Introduction

One of the key issues in designing a distributed protocol (algorithm) is its conver-
gence to a stable state, also known as self-stabilization. Intuitively, starting from any
initial (arbitrarily corrupted) state, the protocol should eventually converge to the
“correct state” as intended by the designer. Incentive compatibility considerations
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have been also become important in the study of distributed protocols since the par-
ticipants cannot be assumed to altruistically implement the protocol if that is not
beneficial for themselves.

A unifying game-theoretic approach for proving both convergence and incentive
compatibility has been recently proposed by Nisan et al. [19]. They consider so-called
best-response mechanisms or dynamics in which the protocol prescribes that each
participant (or player) should simply best-respond to the strategy currently played
by the other players. Essentially the same base game is played over and over (or
until some equilibrium is reached), with players updating their strategies in some
(unspecified) order. Nisan et al. [19] proved that for a suitable class of games the
following happens:

– Convergence. The dynamics eventually reaches a unique equilibrium point (a
unique pure Nash equilibrium) of the base game regardless of the order in which
players respond (including concurrent responses).

– Incentive compatibility. A player who deviates from the prescribed best-response
strategy can only worsen his/her final utility, that is, the dynamics will reach a
different state that yields weakly smaller payoff.

These two conditions say that the protocol will eventually “stabilize” if implemented
correctly, and that the participants are actually willing to do so. Convergence itself is a
rather strong condition because no assumption is made on how players are scheduled
for updating their strategies, a typical situation in asynchronous settings. Incentive
compatibility is also non-trivial because a best-response is a myopic strategy which
does not take into account the future updates of the other players. In fact, neither of
these conditions can be guaranteed on general games.

Nisan et al. [19] showed that several protocols and mechanisms arising in com-
puterized and economics settings are in fact best-response mechanisms over the
restricted class of games for which convergence and incentive compatibility are
always guaranteed. Their applications include: (1) the Border Gateway Protocol
(BGP) currently used in the Internet, (2) a game-theoretic version of the TCP proto-
col, and (3) mechanisms for the classical cost-sharing and stable roommates problems
studied in micro-economics.
In this work we address the following question:

What happens to these protocols/mechanisms if players do not always best
respond?

Is it possible that when players sometimes deviate from the prescribed protocol (e.g.,
by making mistakes in computing their best-response or by scarce knowledge about
other players’ actions) then the protocol does not converge anymore? Can such mis-
takes induce some other player to adopt a non-best-response strategy that results in
a better payoff? Such questions arise naturally from fault tolerant considerations in
protocol design, and have several connections to equilibria computation and bounded
rationality issues in game theory.

Our contribution. We investigate convergence and incentive compatibility condi-
tions of mechanisms (dynamics) described in [19] when players are not guaranteed



Theory Comput Syst

to always best respond but they rather play an imperfect best-response strategy. That
is, at every time step every player deviates from the prescribed best-response strategy
according to some probability parameter p ≥ 0. The parameter p can be regarded as
the probability of making a mistake every time the player updates his/her strategy.

Our results indicate to what extent convergence and incentive compatibility
depend on the assumption that players never make mistakes, and provide necessary
and sufficient conditions for the robustness of these mechanisms/dynamics:

– Convergence. Because of mistakes convergence can be achieved only in a
probabilistic sense. We give bounds on the parameter p in order to guarantee
convergence with sufficiently good probability.

One might think that for small values of p our dynamics behaves (approx-
imately) as the dynamics without mistakes, i.e. it converges to an equilibrium
point regardless of the order in which players respond. However, it turns out this
is not the case. Indeed, our first negative result (Theorem 2) shows that even
when p is exponentially small in the number n of players the dynamics does
not converge, i.e., the probability of being in the equilibrium is always small
(interestingly, such negative result applies also to certain instances of BGP in the
realistic model of Gao and Rexford [10]).

The proof of this result shows the existence of a particularly “bad” sched-
ule that amplifies the probability that the imperfect dynamics deviates from the
perfect one. This highlights that imperfect dynamics differ from their perfect
counterpart, since in the former convergence results must consider how players
are scheduled. Indeed, we complement the negative result above with a general
positive result (Theorem 3) saying that convergence can be guaranteed whenever
p is polynomially small in some parameters depending both on the game and on
the schedule of the players. For such values of p, the upper bound on the con-
vergence time of dynamics without mistakes is (nearly) an upper bound for the
imperfect best-response dynamics.

– Incentive compatibility. We first observe that games that are incentive compat-
ible for dynamics without mistakes, may no longer be incentive compatible for
imperfect best-response dynamics (Theorem 4). In other words, a player who
deviates incidentally from the mechanism induces another player to deliberately
deviate. A sufficient condition for incentive compatibility of imperfect best-
response mechanisms (Theorem 5) turns out to be a quantitative version of the
one given in [19]. Roughly speaking, if the payoffs of the Nash equilibrium are
sufficiently larger than the other possible payoffs, then incentive compatibility
holds. As the probability p of making mistakes vanishes, the class of games for
which convergence and incentive compatibility holds tends to the class of games
in [19].

Our focus is on the same class of (base) games of [19] since this is the only known
general class for which best-response dynamics converge (regardless of the schedule
of the players) and are incentive compatible. In our view this class is important as it
describes accurately certain protocols that are implemented in practice and it unifies
several results in game theory. In particular, the mathematical model of how the com-
mercial relationships between Autonomous Systems (the Gao-Rexford model [10])
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leads to games in this class and, ultimately, to the fact that BGP converges and is
incentive compatible [17, 19]. Considering more general games for the analysis of
BGP would in fact produce “wrong” results (constructing unrealistic examples for
which the protocol does not converge or is not incentive compatible).

We nevertheless take one step further and apply the tools from [19] (and this work)
to a natural generalization of their games. Intuitively speaking, these games guaran-
tee only that best-response converge to a subgame. In this case, the dynamics of the
original game can be approximated by the dynamics of the subgame (Theorem 6).
Unfortunately, this “reduction” cannot be pushed further simply because the subgame
can be an arbitrary game and different p-imperfect best-response dynamics lead to
different equilibria (even for the same p; see Section 5.1). However, when the dynam-
ics on the subgame are well-understood, then we can infer their behavior also on the
original game.

Related work. Convergence of best-response dynamics is a main topic in game the-
ory. It relates to the so-called problem of equilibrium selection, that is, how the
players converge to an equilibrium (see the book by Harsanyi and Selten [13]). Noisy
versions of best-response dynamics have been studied in order to consider the effects
of bounded rationality and limited knowledge of the players (which limits their ability
to compute their best responses).

Our imperfect best response dynamics are similar to the mutation model by
Kandori et al. [15], and to the mistakes model by Young [20], and Kandori and
Rob [16]. A related model is the logit dynamics of Blume [7] in which the probability
of a mistake depends on the payoffs of the game. All of these works assume a partic-
ular schedule of the players (the order in which they play in the dynamics). Whether
such an assumption affects the selected equilibrium is the main focus of a recent
work by Alos-Ferrer and Netzer [1]. They studied convergence of these dynamics on
general games when the parameter p vanishes, and provide a characterization of the
resulting equilibria in terms of a kind of potential function of the game. Convergence
results that take into account non-vanishing p are only known for fixed dynamics on
specific class of games (see, e.g., [2, 3, 7]).

Incentive compatibility of best-response dynamics provide a theoretical justifica-
tion for several protocols and auctions widely adopted in practice. Levin et al. [17]
proved convergence and incentive compatibility of the intricate BGP protocol in the
current Internet (based on the mathematical model by Gao and Rexford [10] that cap-
tures the commercial structure that underlies the Internet and explains convergence of
BGP). The theoretical analysis of TCP-inspired games by Godfrey et al. [11] shows
that certain variants of the current TCP protocol converge (the flow rate stabilizes)
and are incentive compatible on arbitrary networks (this property assumes routers
adopt specific queuing policy). The so-called Generalized Second-Price auctions
used in many ad-auctions is another example of incentive compatible best-response
mechanism as proved by Nisan et al. [18]. All of these problems (and others) and
results have been unified by Nisan et al. [19] in their framework.
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2 Definitions

We consider an n-player base game G in which each player i has a finite set of
strategies Si , and a utility function ui . Each player can select a strategy si ∈ Si

and the vector s = (s1, . . . , sn) is the corresponding strategy profile, with ui(s)
being the payoff of player i. To stress the dependency of the utility ui on the strat-
egy zi of player i we adopt the standard notation (zi, s−i ) to denote the vector
(s1, . . . , si−1, zi, si+1, . . . , sn).

Definition 1 (best response) A strategy s∗
i ∈ Si is a best response to the strategy

profile s−i if this strategy maximizes i’s payoff, that is, for every other strategy s′
i ∈ Si

it holds

ui(s
′
i , s−i ) ≤ ui(s

∗
i , s−i ).

(Imperfect) Best-response dynamics. A game dynamics consists of a (possibly infi-
nite) sequence of strategy profiles s0, s1, . . ., where s0 is an arbitrarily chosen profile
and the profile st is obtained from st−1 by letting some of the players updating their
strategies. Therefore a game dynamics is determined by a schedule of the players
specifying, for each time step, the subset of players that are selected for updating their
strategies, and a response rule, which specifies how a player updates her strategy
(possibly depending on the past history and on the current strategy profile). A natural
and well-studied response rule prescribes that players (myopically) choose the best
response to the strategies currently chosen by the others (according to Definition 1).

In this work we focus on dynamics based on the following kind of schedules and
response rules. As for the response rule, we consider a scenario in which a selected
player can deviates from the (prescribed) best-response.

Definition 2 (p-imperfect response rule) A response rule is p-imperfect if a player
does not update her strategy to the best-response with probability at most p.

Examples of these rules are given in the mutation [15] or mistakes models [16,
20] (see Appendix A.1 for a brief overview). The best-response rule is obviously 0-
imperfect, which we also denote as perfect. The response rule in logit dynamics [7]
(see Appendix A.2 for a brief overview) is p-imperfect with

p ≤ m − 1

m − 1 + eβ

for all games in which the payoff are integers1 and each player has at most m
strategies.

1When the minimum difference in the payoff of an agent between a best-response and a non-best response
is γ , this extends easily by taking βγ = β · γ in place of β.
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In order to avoid trivial impossibility results on convergence we need to consider
a non-adaptive adversarial schedule that satisfies some reasonable fairness condi-
tion. We allow both deterministic and randomized schedules satisfying the following
definition.

Definition 3 ((R, ε)-fair schedule) A schedule is (R, ε)-fair if there exists a non-
negative integer R such that, for any interval of R time steps, all players are selected
at least once in this interval with probability at least 1 − ε, i.e., for every player i and
any time step a we have

Pr(SELi,a,R) ≥ 1 − ε,

where SELi,a,R is the event that player i is selected at least once in the interval
[a + 1, a + R].

The convergence rate of a dynamics is measured in number of rounds, where a
round is a sequence of consecutive time steps in which each player is selected for
update at least once. The definition above affects the (expected) length of a round
and the probability that a round has a certain length (number of steps).

Observation 1 If a schedule is (R, ε)-fair then, for every 0 < δ < ε, it is also
(R′, δ)-fair with

R′ = R ·
⌈

ln(1/δ)

ln(1/ε)

⌉
.

Proof We show that, if a schedule is (R, ε)-fair, then every player is selected at least
once with probability at least 1 − δ in an interval of R′ time steps. For any interval
of R time steps, the probability that a player i is not selected is at most ε regardless
of what happened before this interval. Thus, the probability that i is never selected

in k consecutive intervals of R time steps each is at most εk . For k =
⌈

ln(1/δ)
ln(1/ε)

⌉
, this

probability is at most δ because

εk ≤ ε
ln(1/δ)
ln(1/ε) = ε

ln δ
ln ε = eln δ = δ.

Then, the probability that player i is never selected in R′ = kR time steps is at most
δ.

Another important parameter of the schedule is the maximum number of players
selected for update in one step by the schedule, denoted as η (with η ≤ n).

Example 1 Scheduling players in round-robin fashion or concurrently corresponds
to (n, 0)-fair and (1,0)-fair schedules, respectively. From the well-known Coupon
Collector’s problem, we have that selecting a player uniformly at random at each
time step is (R, ε)-fair with R = �n ln n + n ln(1/ε)� = O(n ln n).2

2The analysis of the Coupon Collector’s says that, if we pick one player uniformly at random and repeat
this for R ≥ n ln n+ cn time steps, then the probability that some player has never been selected is at most
e−c . This probability is smaller than ε for c ≥ ln(1/ε).
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Henceforth, we always refer as imperfect best-response dynamics to any dynamics
whose schedule is (R, ε)-fair and whose response rule is p-imperfect, and as imper-
fect best-response mechanisms to the class of all imperfect best-response dynamics.
Note that we do not put any other constraint on the way the dynamics run. For
instance, the response rule of the players can depend on the history of the dynamics,
as long as the probability of not choosing a best response is at most p.

Convergence and incentive compatibility. We define convergence and incentive com-
patibility as in Nisan et al. [19]. We say that a game dynamics for a game G converges
if it eventually converges to a (pure) Nash equilibrium of the game, i.e. there exists
t > 0 such that the strategy profile of players at time step t coincides with a Nash
equilibrium of G. This definition might seem limited in a setting in which players can
“make mistakes” since, once a Nash equilibrium is reached, there is a positive prob-
ability of leaving again from this state. However, we choose to adopt this definition
of convergence (the same as in [19]) because when the parameters of the dynamics
guarantee convergence to a Nash equilibrium in a “small” number of rounds with
“good probability”, then the dynamics is likely to remain in the Nash equilibrium
for “many” steps (see Corollary 1). This is useful in applications in which there is
a “termination condition” (for instance, the dynamics ends if no player updates her
strategy for a certain number of consecutive steps).

The above considerations on “termination condition” leads to the following defi-
nition of total utility and the resulting incentive compatibility condition, both defined
as in [19]. Let us denote with Xt the random variable that represents the strategy pro-
file induced by a dynamics on a game G after t time steps. If the dynamics terminates
after some finite number of steps T, then the total utility of a player i is defined as
Γi = E

[
ui

(
XT
)]

; otherwise, that is if the dynamics does not terminate after finite
time, the total utility is defined as Γi = lim supt→∞ E

[
ui

(
Xt
)]

. Then, a dynamics
for a game G is incentive compatible if playing this dynamics is a pure Nash equi-
librium in a new game G	 in which players’ strategies are all possible response rule
that may be used in G and players’ utilities are given by their total utilities. That is,
a dynamics for a game G is incentive compatible if every player does not improves
her total utilities by playing according to a response rule different from the one pre-
scribed, given that each other player does not deviate from the prescribed response
rule.

Never best-response and the main result in [19]. Nisan et al. [19] analyzed the con-
vergence and incentive compatibility of the (perfect) best-response dynamics. Before
stating their result, let us now recall some definitions.

Definition 4 (never best-response) A strategy si is a never best-response (NBR) for
player i if, for every s−i , there exists s′

i such that ui(si , s−i ) < ui(s
′
i , s−i ).3

3Nisan et al. [19] assume that each player has also a tie breaking rule ≺i , i.e., a total order on Si , that
depends solely on the player’s private information. In the case that a tie breaking rule ≺i has been defined
for player i, then si is a NBR for i also if ui(si , s−i ) = ui(s

′
i , s−i ) and si ≺i s′

i . However, such tie-breaking
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Note that according to a p-imperfect response rule, a player updates her strategy
to a NBR with probability at most p.

Definition 5 (elimination sequence) An elimination sequence for a game G consists
of a sequence of subgames

G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = Ĝ,

where any game Gk+1 is obtained from the previous one by letting a player i(k)

eliminate strategies which are NBR in Gk .

The length of the shortest elimination sequence for a game G is denoted with 
G

(we omit the subscript when it is clear from the context). It is easy to see that for each
game 
G ≤ n(m − 1), where m is the maximum number of strategies of a player.

Our results will focus on the following classes of games.

Definition 6 (NBR-reducible and NBR-solvable games) The game G is NBR-
reducible to Ĝ if there exists an elimination sequence for G that ends in Ĝ. The game
G is NBR-solvable if it is NBR-reducible to Ĝ and Ĝ consists of a unique profile.

Example 2 Consider a 2-player game with strategies {0, 1, 2} and the following
utilities:

Notice that strategy 2 is a NBR for both players. Hence, there exists an elimination
sequence of length 2 that reduces the above game to its upper-left 2 × 2 subgame
with strategy set {0, 1} for each player. Therefore, this game is NBR-reducible. If we
modify the utilities in this upper-left 2 × 2 subgame as follows

then the game reduces further to the profile (0,0) and hence it is NBR-solvable.
Observe that the unique profile at which the game G is reduced in an NBR-solvable
game is also the unique Nash equilibrium of the original game.

While the convergence result of [19] holds for the class of NBR-solvable games,
in order to guarantee incentive compatibility they introduce the following condition
on the payoffs:

Definition 7 (NBR-solvable with clear outcome) A NBR-solvable game is said
to have a clear outcome if, for every player i, there is a player-specific elimination

rule can be implemented in a game by means of suitable perturbations of the utility function: with such an
implementation our definition become equivalent to the one given in [19].
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sequence such that the following holds. If i appears the first time in this sequence at
position k, then in the subgame Gk the profile that maximizes the utility of player
i = i(k) is the Nash equilibrium.

Theorem 1 (main result of [19]) Best-response dynamics of every NBR-solvable
game G converge to a pure Nash equilibrium of the game and, if G has clear outcome,
are incentive compatible. Moreover, convergence is guaranteed in 
G rounds for any
schedule, where a round is a sequence of consecutive time steps in which each player
is selected for update at least once.

Note that convergence and incentive compatibility holds regardless of the schedule
of players. Moreover, the theorem implies that for a specific (R, ε)-fair schedule the
dynamics converges in O(R · 
G) time steps. Note also that convergence does not
require a clear outcome and this condition is only needed for incentive compatibility.

3 Convergence Properties

3.1 A Negative Result

In this section we will show that the result about convergence of the best-response
dynamics in NBR-solvable games given in [19] is not resistant to the introduction of
“noise”, i.e., there is a NBR-solvable games and an imperfect best-response dynamics
that never converges, except with small probability, to the Nash equilibrium even for
values of p very small. Specifically we will prove the following theorem.

Theorem 2 For every 0 < δ < 1, there exist an n-player NBR-solvable game G and
an imperfect best-response dynamics with parameter p exponentially small in n such
that for every integer t > 0 the dynamics converges after t steps with probability at
most δ.

We highlight that this theorem does not state only that the probability of being in
the Nash equilibrium at any time t is low, but that the probability that the system has
ever been in the Nash equilibrium at any time before t is low.

The game. Consider the following game: there are n players with two strategies 0
and 1. For each player i, we define the utility function of i as follows: if players
1, . . . , i − 1 are playing 1, then i prefers to play 1 regardless of the strategies played
by players i + 1, . . . , n, i.e., ui(11···i−1, 0, si+1···n) < ui(11···i−1, 1, si+1···n) for each
strategy profile s, otherwise i prefers to play 0, i.e. ui(s−i , 1) < ui(s−i , 0) for any s
such that s1···i−1 = 11···i−1.

It is easy to check that the above game is NBR-solvable. Indeed, the elimination
sequence consists of players 1, 2, . . . , n eliminating strategy 0 one-by-one in this
order (note that 1 is a dominant strategy for player 1 and, more in general, strategy
1 is dominant for i in the subgame in which all players 1, . . . , i − 1 have eliminated
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0). The subgame Ĝ consists of the unique pure Nash equilibrium that is the profile
1 = (1, . . . , 1).

The p-imperfect response rule. All players play a generic p-imperfect response rule,
according to which best-response is played with probability 1 − p. Specifically, we
have:

– Player i chooses strategy 0 with probability p if all players j < i are playing
strategy 1;

– Player i chooses strategy 0 with probability 1 − p if at least one player j < i is
playing strategy 0.

The (2n−1, 0)-fair schedule. Let us start by defining sequences σi , with i = 1, . . . , n,
recursively as follows

σ1 = 1, σ2 = 12, σ3 = 1213, . . . σi = σi−1σi−2· · ·σ1i.

Observe that each sequence has length 2i−1. Then players are scheduled one at a
time according to σn and then repeat. The resulting schedule will be denoted as σ . A
key observation about the schedule σ follows.

Observation 2 Between any two occurrences of player i < n in the schedule σ there
is an occurrence of a player j ≥ i + 1.

Proof Note that the player i can occur in the sequence only when the subsequence
σi occurs. Anyway, any occurrence of the sequence σi is within a subsequence σj

for j = i + 1, . . . , n. In σj the occurrence of σi is followed by the occurrences of
σi−1, . . . , σ1, in which the player i cannot occur, and then by the occurrence of j,
completing in this way the proof.

Intuitively speaking, this property causes any bad move of some player in the
sequence σn to propagate to the last player n, where by “bad move” we mean that at
time t the corresponding player σ(t) plays strategy 0 given that each player j < σ(t)

plays 1 (thus, a bad move occurs with probability p).

Proof (of Theorem 2) Throughout the proof we will denote 2n−1 as τ for sake of
readability.

Let Xt be the random variable that represents the profile of the game at step t.
We will denote with Xn

t the n-th coordinate of Xt , i.e. the strategy played by player
n at time t. Suppose that player n plays 0 at the beginning. Then, for every t < τ ,
the probability that at time step t the game is in a Nash equilibrium is obviously
0. Consider now t ≥ τ . The probability that at time step t the game is in a Nash
equilibrium is obviously less than the probability that Xn

t = 1. Hence it will be
sufficient to show that Pr(Xn

t = 1) ≤ δ. Note that Xn
t = Xn

cτ , c being the largest
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integer such that t ≥ c · τ . Since both the response rule and the schedule described
above are memoryless, for every profile s

Pr
(
Xn

cτ = 1 | X(c−1)τ = s
) = Pr

(
Xn

τ = 1 | X0 = s
)
.

Let us use Prs
(
Xn

τ = 1
)

as a shorthand for Pr
(
Xn

τ = 1 | X0 = s
)
. Moreover, let B

denote the event that no bad move occurs in the interval [1, τ ] and let Bt denote the
event that the first bad move occurs at time t ∈ {1, . . . , τ }. Then

Pr
s

(
Xn

τ = 1
) = Pr

s

(
Xn

τ = 1 | B
) · Pr(B) +

τ∑
t=1

Pr
s

(
Xn

τ = 1 | Bt

)
Pr(Bt ).

Note that Bt has probability at most p and B has probability (1 − p)τ . Obviously,
Prs
(
Xn

τ = 1 | B
) = 1. Moreover, by Observation 2, given a bad move of player

i0 = n at time ti0 , there is a sequence of time steps ti0 < ti1 < ti2 < · · · < tn such
that player ij > ij−1 is selected at time tij and it is not selected further before tij+1 .
Therefore, player i1 plays 0 at time ti1 with probability 1 − p because at that time i0
is still playing 0. Similarly, if player ij at time tij+1 is still playing 0, then player ij+1
will play 0 with probability 1 − p. Hence,

Pr
s

(
Xn

τ = 1 | Bt

) ≥ (1 − p)n.

Then

Pr
s

(
Xn

τ = 1
) ≤ (1 − p)τ + τp(1 − (1 − p)n).

We next upper bound these quantities by using 1 − x ≤ e−x ≤ (1 + x)−1 as
follows. As for the first quantity,

(1 − p)τ ≤ e−pτ ≤ 1

1 + pτ
.

As for the second quantity, observe that

e
− p

1−p ≤
(

1 + p

1 − p

)−1

= 1 − p.

This and 1 − e−x ≤ x imply

1 − (1 − p)n ≤ 1 − e
−n

p
1−p ≤ n

p

1 − p
.

We have thus shown that

Pr
s

(
Xn

τ = 1
) ≤ 1

1 + pτ
+ τpn

p

1 − p
.

By setting p := 2−δ
δτ

, we have

1

1 + pτ
= 1

1 + 2−δ
δ

= δ

2
and τpn

p

1 − p
= 2 − δ

δ
n

2 − δ

δτ − 2 + δ
.
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Since τ = 2n−1, for every δ > 0, the latter quantity tends to 0 as n goes to infinity.
The theorem thus follows by observing that there exists a sufficiently large n such
that Prs

(
Xn

τ = 1
)

< δ.

Remark 1 (BGP games) The proof of the above theorem can be adapted to the class
of BGP games [17, 19]. In these games, we are given an undirected graph with n
nodes (the players) and an additional destination node d. The strategy of each player
is to choose the next hop in the routing towards d, that is, to point to one of its
neighbors in the graph. Each node has a preference order over all possible paths (and
“non-valid paths” have naturally the lowest rank).

We consider the instance with n + 2 players and the destination node d given in
Fig. 1.

Moreover, we specify the relationships among players according to the Gao-
Rexford model [10], as follows: each node i, with i = 1, . . . , n − 1, is a provider for
node i +1 and a customer of node i −1; moreover, node a is a provider for each node
i = 1, . . . , n (Fig. 1).

The so-called filtering policy of the Gao-Rexford model (that dictates that each
node forwards traffic from one of its customers or to one of its customers only)
implies that in this instance the only available path for nodes 0 and a is the one that
routes directly to d. As for the player i = 1, 2, . . . , n, they are left with two available
choices: we denote by 0 the strategy to route to node a and by 1 the strategy to route
to node i − 1. We can then set the preferences of player i over the paths as follows:

– Node i’s top ranked path is i → i − 1 → · · · → 1 → 0 → d .
– Node i’s second top ranked path is i → a → d .
– Every other path has lower rank.

The reader can check that in this instance we have that:

1. For any strategy profile s,

ui(11···i−1, 0, si+1···n) < ui(11···i−1, 1, si+1···n),

by definition of i’s top ranked path above.
2. For any s such that s1···i−1 = 11···i−1

ui(s−i , 1) < ui(s−i , 0),

by definition of i’s second top ranked path above.

Fig. 1 An instance of the BGP game in which an imperfect best-response dynamics fails to converge
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Remark 2 (logit dynamics) It is interesting that we can instantiate the abstract game
described in the proof with utilities:

ui(0, s−i ) = 0 and ui(1, s−i ) =
{

1, ifs1 = · · · = si−1 = 1;
−1, otherwise;

where L is a large number. Similarly, the response rule described above may be
instantiated as a logit response rule with noise β, that corresponds to setting

p = 1

1 + eβ
.

Therefore our lower bound also applies to logit dynamics (for a suitable game and a
suitable noise parameter β).

The proof of Theorem 2 highlights that imperfect dynamics differ from the perfect
ones, since convergence result should necessarily depend on the schedule of play-
ers. Specifically, a closer look at the proof shows that there is a game in which an
imperfect best-response dynamics does not converge for p = 1/R or greater. As
a consequence, it may be possible to prove that imperfect best response dynamics
converge for any game only by taking p smaller than 1/R.

3.2 A Positive Result (Convergence Time)

Given the negative result above, we wonder whether there are values of p for which
the convergence of perfect best-response mechanisms is restored. The following the-
orem states that this occurs when p is small with respect to parameters R, η and

.

Theorem 3 For any NBR-solvable game G and any small δ > 0 an imperfect best-
response dynamics converges to the Nash equilibrium of G in O(R · 
 ln 
) steps with
probability at least 1 − δ, whenever p ≤ c

ηR·
 ln 

, for a suitably chosen constant

c = c(δ).

The following two lemmas represent the main tools in the proof of the the-
orem. Both lemmas hold for NBR-solvable games as for the more general class
of NBR-reducible games. Moreover, in both lemmas we denote with Xt the ran-
dom variable that represents the profile of the game after t steps of an imperfect
best-response dynamics. Note also that, for an event E we denote with Prs(E) the
probability of the event E conditioned on the initial profile being X0 = s, i.e.,
Prs(E) = Pr(E | X0 = s).

Lemma 1 For any NBR-reducible game G, any imperfect best-response dynamics,
any starting profile s, and any t, θ with t, θ ≥ 0, we have

Pr
s

(Xt+θ ∈ Gk | Xθ ∈ Gk) ≥ 1 − ηpt, ∀k = 0, . . .
; (1)

Pr
s

(XR+θ ∈ Gk+1 | Xθ ∈ Gk) ≥ 1 − ηpR − ε, ∀k = 0, . . . , 
 − 1. (2)
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Proof Let the dynamics be in Gk at time θ and observe that if the dynamics is not in
Gk at time t + θ , then in one of the steps in the interval [θ + 1, θ + t] some selected
player played a NBR. Since at every step at most η players are selected, (1) follows
from the union bound.

Similarly, if the dynamics is not in Gk+1 at time t + θ given that player i(k) has
been selected for update at least once during the interval [θ + 1, θ + t], then in one
of these time steps some selected player played a NBR. Hence,

Pr
s

(
Xt+θ ∈ Gk+1 | Xθ ∈ Gk ∩ SELi(k),θ,t

) ≤ ηtp. (3)

Now simply observe that the definition of conditional probability implies that

Pr
s
(Xt+θ ∈/Gk+1 | Xθ ∈ Gk)

= Pr
s

(
Xt+θ ∈ Gk+1 | Xθ ∈ Gk ∩ SELi(k),θ,t

)
Pr
s

(
SELi(k),θ,t | Xθ ∈ Gk

)
+Pr

s

(
Xt+θ ∈ Gk+1 | Xθ ∈ Gk ∩ SELi(k),θ,t

)
Pr
s

(
SELi(k),θ,t | Xθ ∈ Gk

)
≤ Pr

s

(
Xt+θ ∈ Gk+1 | Xθ ∈ Gk ∩ SELi(k),θ,t

)+ Pr
s

(
SELi(k),θ,t | Xθ ∈ Gk

)
,

where SELi(k),θ,t denotes the event that SELi(k),θ,t does not occur. Since the proba-
bility that it occurs is at least 1 − ε regardless of the value of Xθ , then from (3) we
achieve

Pr
s
(Xt+θ ∈ Gk+1 | Xθ ∈ Gk) ≤ ηtp + ε.

Lemma 2 For any NBR-reducible game G, any imperfect best-response dynamics,
any starting profile s and k = 0, . . . , 
, we have

Pr
s

(XkR ∈ Gk) ≥ 1 − k · (ηpR + ε).

Proof Observe that

Pr
s

(XkR /∈ Gk) ≤ Pr
s

(
XkR /∈ Gk | X(k−1)R ∈ Gk−1

)+ Pr
s

(
X(k−1)R /∈ Gk−1

)
≤ ηpR + ε + Pr

s

(
X(k−1)R /∈ Gk−1

)
,

where the first inequality follows from the definition of conditional probabilities and
the last one uses (2). Since Prs(X0 /∈ G0) = 0 the lemma follows by iterating the
argument.

Proof (of Theorem 3) Consider an interval of length T = R ·
⌈

ln(2
/δ)
ln(1/ε)

⌉
. From Obser-

vation 1, the probability that all players are selected at least once in an interval of
length T is δ

2

. That is, every (R, ε)-fair schedule is also (T , δ/2
)-fair. By applying

Lemma 2 with (R, ε) = (T , δ/2
) we then have that for any NBR-reducible game G,
any imperfect best-response dynamics and any starting profile s

Pr
s
(X
T ∈ G
) ≥ 1 − 
 · (ηpT + δ/2
).

The theorem then follows by taking p ≤ δ
2 · 1

ηT 

.
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4 Incentive Compatibility Property

In this section we ask if the incentive compatibility property holds also in presence
of noise, that is, if deviating from a p-imperfect best-response rule is not beneficial
for the player. Note that adopting a p′-imperfect response rule, with p′ < p, should
be not considered a deviation, since this rule is also a p-imperfect response rule.

4.1 A Negative Result

In this section we show that the incentive compatibility condition is not robust
against noise and mistakes. Indeed, the following theorem says that, even for arbi-
trarily small p > 0, there are games for which p-imperfect best response dynamics
are no longer incentive compatible (though best-response dynamics are incentive
compatible according to the main result of [19] – see Theorem 1 above).

Theorem 4 For any p > 0, there exist a NBR-solvable game with clear out-
come and a p-imperfect best-response dynamics whose response rule is not incentive
compatible.

Proof Consider the following game G with clear outcome (the gray profile)

where L is a sufficiently large constant (to be specified below). We examine what
happens when both players play according to a particular p-imperfect best response
dynamics, namely the logit dynamics with parameter β (see Appendix A.2 for
details). It turns out that the column player can improve her utility by playing always
strategy “right” (thus deviating to a 1-imperfect best response).

We first use a known result by [7] to compute the expected utilities of logit dynam-
ics for this game. The above game is a potential game and the potential function4 Φ

is given by the following table:

For potential games, the logit dynamics converges to the following distribution π

on the set of profiles:

π(s) = e−βΦ(s)∑
s′∈Se−βΦ(s′) .

4A game is a potential game if there exists a function Φ such that, for all i, for all s−i , and for all si , s
′
i ,

it holds that Φ(si , s−i ) − Φ(s′
i , s−i ) = ui(s

′
i , s−i ) − ui(si , s−i ). Such function Φ is called a potential

function of the game.
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Hence, the expected utility of the column player when she plays according to the
logit response rule is

1 · eβ(L+2) + L · eβL

1 + eβL + eβ(L+1) + eβ(L+2)
<

e2β + L

1 + eβ + e2β
. (4)

If instead the column player plays always strategy “right”, then her expected payoff is
determined by the logit dynamics on the corresponding subgame. The same potential
argument above (note that Φ is also a potential for this subgame) says that the column
player has expected payoff equal to

L · eβL

eβL + eβ(L+1)
= L

1 + eβ
. (5)

Since the right-hand side of (4) is smaller than (5) for L ≥ 1 + eβ , the theorem
follows from the observation that, in games with two strategies and integer payoffs,
logit dynamics are pβ -imperfect with pβ = 1

1+eβ (see Section 2 and Appendix A.2
for details).

4.2 A Positive Result

As done for convergence, we now investigate for sufficient conditions for incentive
compatibility. We will assume that utilities are non-negative: note that there are a lot
of response rules that are invariant with respect to the actual value of the utility func-
tion and thus, in these cases, this assumption is without loss of generality. Recall that
we denote as i(k) and Gk the first occurrence of the player and the corresponding sub-
game in the elimination sequence given by the definition of game with clear outcome
(Definition 7).

It turns out that we need a “quantitative” version of the definition of clear out-
come, i.e., that whenever the player i has to eliminate a NBR her utility in the Nash
equilibrium is sufficiently larger than the utility of any other profile in the subgame
she is actually playing. Specifically, we have the following theorem.

Theorem 5 For any NBR-solvable game G with clear outcome and any small δ > 0,
playing according to a p-imperfect rule is incentive compatible for player i = i(k) as
long as p ≤ c

ηR·
 ln 

, for a suitable constant c = c(δ), the dynamics run for at least

r · (R
 ln 
), with r = r(δ) constant, and

ui(NE) ≥ 1

1 − δ

(
δ · max(ui, G) + max (ui, Gk)

)
,

where ui(NE) is the utility of i in the Nash equilibrium, max(ui, Gk) =
maxs∈Gk

ui(s) and max(ui, G) = maxs∈G ui(s).

We can summarize the intuition behind the proof of Theorem 5 as follows:

– If player i always updates according to the p-imperfect response rule, then
the game will be in the Nash equilibrium with high probability and hence her
expected utility almost coincides with the Nash equilibrium utility;
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– Suppose, instead, player i does not update according to a p-imperfect response
rule. Notice that the elimination of strategies up to Gk is not affected by what
player i does. Therefore profiles of G \Gk will be played only with small proba-
bility (but i can gain the highest possible utility from these profiles), whereas the
game will be in a profile of Gk with the remaining probability.

Let us now formalize this idea. We start with the following lemma.

Lemma 3 For any NBR-reducible game G, any imperfect best-response dynamics,
any starting profile s, k = 0, . . . , 
 and t ≥ kR, we have

Pr
s

(Xt ∈ Gk) ≥ 1 − ηp · (t − lkR) − k · (ηpR + ε) ,

where l is the largest integer such that t ≥ lkR.

Proof We have

Pr
s

(Xt /∈ Gk) ≤ Pr
s

(Xt /∈ Gk | XlkR ∈ Gk) + Pr
s

(XlkR /∈ Gk) .

From Lemma 1 we have

Pr
s

(Xt /∈ Gk | XlkR ∈ Gk) ≤ ηp · (t − lkR).

For s′ = X(l−1)kR Lemma 2 implies

Pr
s

(XlkR /∈ Gk) = Pr
s′

(XkR /∈ Gk) ≤ k · (ηpR + ε).

Remark 3 Observe that Lemma 3 holds even if only players i(1), . . . , i(k) are
updating according to a p-imperfect response rule.

We then have the following corollary.

Corollary 1 For any NBR-solvable game G, any imperfect best-response dynamics,
any δ > 0 and any starting profile s, if t ≥ r · (R · 
 ln 
) and p ≤ c

ηR·
 ln 

, for

suitable constants r = r(δ) and c = c(δ), then

Pr
s
(Xt ∈ Ĝ) ≥ 1 − δ.

Proof By using the same approach as in the proof of Theorem 3, we consider an

interval T of length R ·
⌈

ln(3
/δ)
ln(1/ε)

⌉
and p ≤ δ

3 · 1
ηT 


. From Observation 1, the schedule

of G is (T , δ/3
)-fair. By applying Lemma 3 with k = 
 and (R, ε) = (T , δ/3
) we
have that for any NBR-reducible game G, any imperfect best-response dynamics and
any starting profile s, if t ≥ 
T = r · (R · 
 ln 
), where r = r(δ) ≤ 3 + ln 1/δ

ln 1/ε
, then

Pr
s
(Xt ∈ Ĝ) ≥ 1 − δ

3T 

(t − l
T ) − 2δ

3
≥ 1 − δ,

where we used that, by definition of l in Lemma 3, t − l
T ≤ 
T .
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Proof (of Theorem 5) From Corollary 1, the expected utility of i, given that all players
are playing according to the p-imperfect response rule, will be at least (1 − δ) ·
ui(NE).

Suppose now that i does not play a p-imperfect response rule. Similarly as done

above, we let T = R ·
⌈

ln(3k/δ)
ln(1/ε)

⌉
and p ≤ δ

3 · 1
ηT 


. Then, by applying Lemma 3 with

(R, ε) = (T , δ/2k) we obtain

Pr
s
(Xt /∈ Gk) ≤ δ.

Hence, the expected utility of i will be at most δ max(ui, G) + max(ui, Gk) and the
theorem follows.

5 NBR-reducible Games

For general games it is not possible to prove convergence to a pure Nash equilibrium
without making additional assumptions on the schedule and on the response rule.
Such negative result applies also to NBR-reducible games, the natural extension of
NBR-solvable ones. However, we shall see below that, for NBR-reducible games,
several questions on the dynamics of a game G can be answered by studying the
dynamics of the reduced game Ĝ.

5.1 Impossibility Of General Results

At first sight NBR-solvable games may appear as a limited class of games. The class
of NBR-reducible games is a natural generalization that can be applied to more set-
tings. Unfortunately, we next show that no general result can be stated about the
convergence of p-imperfect best-response dynamics. Specifically, we will show that
the system behaves differently not only with respect to which schedule is adopted,
but also with respect to how a p-imperfect response rule is implemented.

Same response rule and different schedules. Consider the classical 2-player coordi-
nation game:

Obviously, the game above is not NBR-solvable but it may be the reduced game
for a NBR-reducible game. We assume players update according to the best-response
rule, but we consider two different schedules: the first one selects just one player
randomly at each time step, whereas the second one updates all players at same time.
Then, it is easy to see that the dynamics with the first schedule always converges
in one of the two Nash equilibria of the game, (0,0) and (1,1), whereas with the
second one it can cycle over profiles (1,0) and (0,1) and never converges (see, e.g.,
Alos-Ferrer and Netzer [1]).



Theory Comput Syst

Same schedule and different response rules. Consider the following 2-player game:

The game has a unique Nash equilibrium, namely (1,0), but it is not NBR-solvable.
We consider two different response rules: in both players update according to the
best-response rule, but they differ in how handling multiple best-response strategies.
The first response rule states that one of these strategies is selected randomly (as
happens in logit response rule), whereas the second response rule choose the best
response randomly only if the current strategy is not a best response. In these cases,
the second response rule adopts a conservative approach and chooses the current
strategy (this is exactly the way the mutation model handles multiple best responses).
Let us pair these response rules with the schedule that selects just one player ran-
domly at each time step. Then, it is easy to see that the dynamics with the second
response rule always converges to the Nash equilibrium and never move from there,
whereas with the first one it cycles infinitely over profiles (1, 0), (0, 0), (0, 1) and
(1,1) (see e.g. Alos-Ferrer and Netzer [1]).

5.2 Reductions Between Games

We will see now that some of the ideas developed in the previous sections about
NBR-solvable games and their pure Nash equilibria can be extended to address ques-
tions about NBR-reducible games. In particular, we will see that for a wide class of
questions about imperfect best-response dynamics for a NBR-reducible game G, an
answer can be given simply by considering a restriction of these dynamics to the
reduced game Ĝ.

Before formally stating this fact, let us introduce some useful concepts.

The dynamics as a Markov chain. Recall that, in general, the dynamics is not a
Markovian process (for instance, the schedule or the response rule of the players
could depend on the history – the past strategy profiles). In order to state our results
in full generality, we allow both the schedule and the response rule to depend on what
we call the status of the dynamics, that is, on a set of information in addition to the
current strategy profile.

We say that the dynamics is in a status–profile pair (h, s) if h is the set of infor-
mation currently available and s is the profile currently played. We denote with H the
set of all status–profile pairs (h, s) and with Ĥ only the ones with s ∈ Ĝ. Let Xt be
the random variable that represents the status–profile pair (h, s) after t steps of the
imperfect best-response dynamics. Then, for every (h, s), (h′, s′) ∈ H we set

P
(
(h, s), (h′, s′)

) = Pr
(
Xi+1 = (h′, s′) | Xi = (h, s)

)
= Pr

(
X1 = (h′, s′) | X0 = (h, s)

)
.

That is, P is the transition matrix of a Markov chain on state space H and
it describes exactly the evolution of the dynamics. Note that we are not restrict-
ing the dynamics to be memoryless, since in the status we can save the history
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of all previous iterations. For a set A ⊆ H we also denote P
(
(h, s), A

) =∑
(h′,s′)∈AP

(
(h, s), (h′, s′)

)
.

Remark 4 Observe that, for any starting status-profile (h, s) ∈ H , if we consider only
the profile component of each Xt , this describes a particular imperfect best response
dynamics (every h gives a different dynamics) starting at s. Denoting by X

(h)
t the

random variable corresponding to this dynamics (now X
(h)
t is a strategy profile), we

can import prior bounds via the following useful inequality:

Pr
(
Xt = (h′, s′) | X0 = (h, s)

) ≤
∑

(h′′,s′)∈H

Pr
(
Xt = (h′′, s′) | X0 = (h, s)

)

= Pr
s

(
X

(h)
t = s′) .

Clearly, the response rule and the schedule of the imperfect best-response dynamics
described by X

(h)
t inherit the same parameters of the original dynamics Xt .

The restricted dynamics. As mentioned above, we will compare the original dynam-
ics with a specific restriction on the subset Ĥ of status–profile pairs. Now we describe
how this restriction is obtained. Henceforth, whenever we refer to the restricted
dynamics, we use X̂t and P̂ in place of Xt and P. Then, the restricted dynamics is
described by a Markov chain on state space H with transition matrix P̂ such that for
every (h, s), (h′, s′) ∈ H

P̂
(
(h, s), (h′, s′)

) =
{

P((h,s),(h′,s′))
P ((h,s),Ĥ )

, if (h, s), (h′, s′) ∈ Ĥ ;
0, otherwise.

Thus, the restricted dynamics is exactly the same as the original one except that the
first never leaves the subgame Ĝ, whereas in the latter, at each time step, there is
probability at most p to leave this subgame. The following lemma quantifies this
similarity, by showing that, for every (h, s) ∈ Ĥ , the total variation distance (TV)5

between the original and the restricted dynamics starting from (h, s) is small.

Lemma 4 For any NBR-reducible game G, any imperfect best-response dynamics,
every (h, s) ∈ Ĥ and any t ≥ 0,∥∥∥P t

(
(h, s), ·)− P̂ t

(
(h, s), ·)∥∥∥ ≤ ηpt. (6)

Proof First observe that, since (h, s) ∈ Ĥ , it holds that∑
(h′,s′)∈H\Ĥ

P ((h, s), (h′, s′)) ≤
∑

(ĥ,ŝ)∈Ĥ

∑
(h′,s′)∈H\Ĥ

P ((ĥ, ŝ), (h′, s′)) (7)

≤ Pr
s

(
X

(h)
1 ∈ Ĝ | X

(h)
0 ∈ Ĝ

)
≤ ηp,

5See Appendix B for a review of the main properties of the total variation distance.
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where the two inequalities follow from Remark 4 and Lemma 1, respectively. We
next prove (6) by induction on t. The base case is t = 1 for which the set of status–
profile pairs (h′, s′) such that P((h, s), (h′, s′)) > P̂ ((h, s), (h′, s′)) is exactly H \ Ĥ

and thus∥∥∥P ((h, s), ·)− P̂
(
(h, s), ·)∥∥∥ =

∑
(h′,s′)∈H\Ĥ

(
P((h, s), (h′, s′)) − P̂ ((h, s), (h′, s′))

)

=
∑

(h′,s′)∈H\Ĥ
P ((h, s), (h′, s′)) ≤ ηp,

where the last inequality follows from (7). As for the inductive step, we have∥∥∥P t
(
(h, s), ·)− P̂ t

(
(h, s), ·)∥∥∥

≤
∥∥∥P ((h, s), ·)P t−1 − P̂

(
(h, s), ·)P t−1

∥∥∥+
∥∥∥P̂ ((h, s), ·)P t−1 − P̂

(
(h, s), ·)P̂ t−1

∥∥∥
≤
∥∥∥P ((h, s), ·)− P̂

(
(h, s), ·)∥∥∥+ sup

(h′,s′)∈Ĥ

∥∥∥P t−1((h′, s′), ·)− P̂ t−1((h′, s′), ·)∥∥∥
≤ ηp + ηp(t − 1) = ηpt,

where the first and second inequality follows from the triangle inequality and mono-
tonicity of the total variation distance, respectively, whereas the last inequality is by
induction.

Status–profile events. We now describe the kind of questions about imperfect best-
response mechanisms and NBR-reducible games for which a reduction can be
beneficial. Roughly speaking, these are all questions about the occurrence (and the
time needed for it) of events that can be described only by looking at status–profile
pairs.

Specifically, a status–profile set event for an imperfect best-response dynamics
is a set of status–profile pairs. A status–profile distro event for an imperfect best-
response dynamics is a distribution on the status–profile pairs. More generally, we
refer to status–profile event if we do not care whether it is a set or a distro event. Note
that many equilibrium concepts can be described as status–profile events, like Nash
equilibria, sink equilibria [12], correlated equilibria [6] or logit equilibria [4]: in any
case we should simply list the set of states or the distribution over states at which we
are interested in. Properties like “a profile that is visited for k times” or “a cycle of
length k visited” are other examples of status–profile events. We remark that in these
examples it is crucial that the equilibrium is defined on the status–profile pairs and
not just on the profiles: indeed, the status can remember the history of the game and
identify such events, whereas they are impossible to recognize if we only know the
current profile.

For an NBR-reducible game G, a status–profile set event is reducible if the set of
status–profile pairs that represent the event contains at least one profile from Ĝ. A
status–profile distro event is reducible if status–profile pairs on which is defined the
distribution that represents the event contains only profiles of Ĝ. It turns out that each
one of the equilibria concepts described above is a reducible status-profile event:
indeed, since all profiles not in Ĝ contain NBR strategies, they are not in the support
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of any Nash, any sink and any correlated equilibrium; as for the logit equilibrium
(that assigns non-zero probability to profiles not in Ĝ) it is not difficult to show (see
Appendix C) that the logit equilibrium of G is close to the logit equilibrium of Ĝ.

A status–profile set event occurs if the imperfect best-response dynamics reaches
a status–profile pair in the set of pairs that represent the event. Similarly, a status–
profile distro event occurs if the distribution on the set of profiles generated by the
dynamics is close to the one that represent the event. The occurrence time of a status–
profile event is the first time step in which it occurs.

We are now in a position to state the main result on NBR-reducible games:

Theorem 6 For any NBR-reducible game G and any small δ > 0, if a reducible
status–profile event for an imperfect best-response dynamics occurs in the restricted
dynamics, then it occurs with probability at least 1 − δ. Moreover, let us denote with
τ the occurrence time of the event E in the restricted dynamics. Then, E occurs in the
original dynamics in O(R · 
 ln 
+ τ) steps with probability at least 1 − δ, whenever

p ≤ min
{

c1
ηR·
 ln 


,
c2
ητ

}
, for suitable constants c1 = c1(δ) and c2 = c2(δ).

Proof We will show that the dynamics will be in Ĥ after O(R ·
 ln 
) with probabil-
ity at least 1 − δ/2; moreover, if the dynamics is in Ĥ after t steps, then a reducible
status–profile event occurs in further τ steps with probability at least 1− δ/2. Hence,
the probability that the event does not occurs in O(R ·
 ln 
+τ) steps will be at most
δ and the theorem follows.

Specifically, consider an interval T of length R ·
⌈

ln(4
/δ)
ln(1/ε)

⌉
. From Remark 4 and

by applying Lemma 2 with k = 
, (R, ε) = (T , δ/4
) and p ≤ δ
4 · 1

ηT 

we have that

for every (h, s) ∈ H

Pr
(
X
T ∈ Ĥ | X0 = (h, s)

)
≤ Pr

s

(
X

(h)

T ∈ Ĝ

)
≤ δ/2.

Finally, note that the probability that, for every t > 0, a reducible status–profile event
occurs in t + τ steps given that after t steps it is in (h′, s′) ∈ Ĥ , is the same as if we
assume the dynamics starts in (h′, s′), i.e., it is equivalent to the probability that the
event occurs in τ steps from (h′, s′). If the event E is a distro event, i.e., the restricted
dynamics converges after τ steps to a distribution π on the status–profile pairs, then,
from (6), the distribution after τ steps of the original dynamics is π except for an
amount of probability of at most ηpτ . On the other hand, if the event E is a set event,
i.e. the restricted dynamics converges after τ steps to a set A of status–profile pairs,
then, from (6) we have

Pr
(
Xτ ∈ A

)
≥ Pr

(
X̂τ ∈ A

)
− μpτ = 1 − μpτ,

and hence, after τ steps, the original dynamics is in A except with probability at most
μpτ . Then, by Lemma 4 and by taking p ≤ δ

2 · 1
ητ

, the probability that the event
occurs in τ steps for the original dynamics starting from (h′, s′) is at least 1−δ/2.
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Example 3 (interference games) The following is an instance of interference games
[5] which model interference in wireless networks according to the “Signal to Inter-
ference plus Noise Ratio” (SINR) physical model. Formally, the game has the
following utilities:

ui(s) =
{

vi − si, if si >
∑

j =i sj ;
−si, otherwise;

where vi is some value assigned to each player (representing the utility if the trans-
mission succeeds), strategy si is the energy spent for transmitting, and the condition
above indicates whether i’s transmission is successful received or not. For two players
with v1 = v2 = 1 + γ , 0 < γ < 1, and Si = {0, 1, 2, 3} the payoffs are

which is NBR-reducible to this subgame:

Note that this is a potential game, with potential Φ given by the following table:

The logit dynamics with parameter β on this subgame converges to the following
distribution π̂ :

where Z = 1 + 2eβγ + eβ(γ−1). This means that, for growing values of β, the
dynamics “converges” to the two Nash equilibria of the game (the stationary proba-
bility of profiles (0,1) and (1,0) increase whereas the probability of the other profiles
diminishes).

According to Theorem 6, the logit dynamics with parameter β on the original
interference game can be analyzed by looking at the dynamics on the subgame only,
provided p being small enough. (Note that in general both p and τ in Theorem 6
depend of β.) For instance, taking the event E =“the dynamics is in one of the
two PNE”, τ is the hitting time of such PNE’s and, for β large enough, the original
dynamics converges to a PNE in O(R + τ) time steps.

The reader may have noticed that, in the previous example, the parameters are set
so as to obtain a subgame which is a potential game. Indeed, the class of interfer-
ence games [5] does not posses pure Nash equilibria in general. For instance, setting
v1 = v2 = 3 and Si = {0, 1, . . . , 4} would give an interference game which is
NBR-reducible to a subgame containing a sink equilibrium [12] (but no pure Nash
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equilibrium). Though the subgame is not a potential game, Theorem 6 suggests a nat-
ural way to tackle the problem by analyzing the sink equilibria of the subgame (e.g.,
the time for the restricted dynamics to reach such an equilibrium).

We conclude this section by observing that Theorem 6 is similar in spirit to the
results by Candogan et al. [8]. Both results aim to link the behavior of dynamics for a
game G to the behavior of the dynamics for a close game Ĝ, for which the dynamics
is well-understood. In [8] are considered games that are “close” to potential games
and it has been showed that the behavior of best and better response dynamics, logit
dynamics and fictitious play can be approximated by the equilibrium behavior of
these dynamics on the close potential games. The extent at which this approximation
is good depends on the distance between the games and on the number of profiles
of these games (that is exponential on the number of players). Our results instead
refer to generic imperfect response dynamics (and thus they hold for best response
and logit dynamics but not for better response dynamics and fictitious play), but we
consider only a very specific “closeness measure”, namely that the game G is NBR-
reducible to the game Ĝ. On the other side, the game Ĝ can approximate G arbitrarily
well, not only with respect to the equilibrium behavior, but also with respect to the
transient behavior of the dynamics.

6 Conclusions

This work addresses how a (small) probability of selecting a non-best response by the
players can affect the convergence and incentive compatibility properties of a class
of dynamics and mechanisms in [19]. We have first shown that there are games for
which convergence does not occur even for a probability p exponentially small in the
number of players (Theorem 2). Our positive result (Theorem 3) says that conver-
gence can be achieved if p is “sufficiently small” compared to certain parameters of
the game and of the schedule (the number 
 of rounds needed in the original dynam-
ics without mistakes and the length R of a “probabilistic round” of the schedule –
see Definition 3). Note that, in this case, the convergence time of the imperfect best-
response dynamics is only moderately larger than the convergence time of the perfect
best-response dynamics: When the latter is guaranteed to converge in R
 time steps
(Theorem 1) the former converges in O(R
 ln 
) time steps with good probability
(Theorem 3).

As for incentive compatibility, we showed that imperfect best-response dynam-
ics require a stronger condition than the one sufficient for perfect best-response
dynamics (cf. Theorems 1 and 4). The sufficient condition (Theorem 5) is essentially
a quantitative version of the condition in [19] (clear outcome) which requires the
payoffs at the equilibrium to be “sufficiently” larger than at other profiles.

Finally, we suggest a natural extension to games which are not NBR-solvable, and
the elimination of NBR strategies yields only a subgame. In such cases, it is natural
to consider the dynamics of the subgame as a good approximation of the dynamics
of the original game. Theorem 6 gives a quantitative bound on the time to reach a
certain “event” as the sum of two quantities: The time for the dynamics to converge to
the subgame plus the time the dynamics restricted to the subgame takes to reach the
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same event. We feel Theorem 6 might have several applications to games which are
reducible to a subgame whose structure makes the analysis of the dynamics easier.
For instance, if the subgame is a potential game, logit dynamics of the original game
(even if this is not a potential game) can be accurately described by the logit dynamics
of the subgame which is known to have an explicit simple stationary distribution [7].6

Also, when the subgame Ĝ is not a potential game, it might be possible to combine
our results with those in [8] in a two-steps analysis: Reduce the game G to a subgame
Ĝ and then study this game by considering the “closest” potential game G̃. More in
general, the advantage of reducing the analysis to a subgame Ĝ is that the resulting
dynamics can be simpler to analyze using known techniques. For instance, for some
potential games, it is possible to analyze variants of the logit dynamics that differ in
the schedule of the players [1, 2].

Acknowledgments Part of the work has been done when both authors were at the Università di Salerno
and later when the first author was at Université Paris Dauphine.

Appendix A: Models for limited knowledge and bounded rationality

A.1 Mutation and mistakes models

The mutation and the mistakes models adopt the same response rule: at every time
step, each selected player updates her strategy to the best response to what other play-
ers are currently doing except with probability ε. With such a probability, a mutation
or mistake occurs, meaning that the selected player chooses a strategy uniformly at
random. That is, suppose player i is selected at time step t and the current strategy
profile is st . We denote with bi(st ) the best response of i to profile st (if more than
one best response exists and the current strategy xt

i of i is a best response, then we
set bi(st ) = xt

i , otherwise we choose one of the best responses uniformly at random).
Then, a strategy sj ∈ Si will be selected by i with probability

pij =
{

(1 − ε) + ε · 1
|Si | , if sj = bi(st );

ε · 1
|Si | , otherwise.

The main difference between these models concerns the schedule: the mutation
model assumes that at each time step every player is selected for update; the mistakes
model assumes that at each time step only one player is selected uniformly at random
for update.

6In the conference version of this work [9], we claimed that in a modified version of PageRank games
[14], there exists a subgame which is a potential game and thus our results can be combined with [7] to
obtain a good approximation of the logit dynamics for these games. Unfortunately, this claim was wrong
and the logit dynamics for this subgame is in general not easy to analyze.
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A.2 Logit dynamics

Logit dynamics is another kind of imperfect best response dynamics in which the
probability of deviating from best response is determined by a parameter β ≥ 0. The
logit dynamics for a game G with parameter β runs as follows. At every time step

1. Select one player i uniformly at random;
2. Update the strategy of player i according to the following probability distribu-

tion:

σi(si , s−i ) = eβui(si ,s−i )

Z(s−i )
,

where Z(s−i ) =∑s′
i
eβui (s

′
i ,s−i ) and β ≥ 0.

Remark 5 The parameter β is sometimes called the “inverse noise” parameter: for
β = 0 the player chooses the strategy uniformly at random, while for β → ∞ the
player chooses a best response (if more than one best response is available, she selects
one of these uniformly at random). Thus, the probability that i plays a best response is
guaranteed to be least 1/|Si |. So, every logit dynamics is p-imperfect for some p < 1.
Moreover, if the payoffs between a best response and a non-best response differ by
at least γ , then the dynamics is p-imperfect with p ≤ (m − 1)/(m − 1 + eγβ).

The above dynamics defines an ergodic Markov chain [7] over the set of all
strategy profiles and with transition probabilities P given by

P(s, s′) = 1

n
·
⎧⎨
⎩

σi(si , s−i ), if s−i = s′−i and si = s′
i;∑n

i=1σi(si, s−i ), if s = s′;
0, otherwise.

Since the Markov chain is ergodic, the chain converges to its (unique) stationary
distribution π . That is, for any starting profile s and any profile s′,

lim
t→∞ P t(s, s′) = π(s′),

where P t(s, s′) is the probability that the dynamics starting with profile s is in profile
s′ after t steps. Thus, the stationary distribution represents the equilibrium reached by
the logit dynamics, also called the logit equilibrium of game G [4].

The stationary distribution of logit dynamics is fully understood for the class of
so-called potential games. We recall that a game is a potential game if there exists a
function Φ such that, for all i, for all s−i , and for all si, s

′
i , it holds that

Φ(si, s−i ) − Φ(s′
i , s−i ) = ui(s

′
i , s−i ) − ui(si , s−i ).

Blume [7] showed that in this case, the stationary distribution of the corresponding
logit dynamics is

π(s) = e−βΦ(s)

Z
,

where Z =∑s′∈Se−βΦ(s′) is the normalizing constant.
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Finally, the time to converge to the logit equilibrium is the so-called mixing time
of the corresponding Markov chain [4], defined as follows. For any ε > 0, consider

tmix(ε) := min
t∈N max

s∈Ω

{∥∥P t(s, ·) − π
∥∥ ≤ ε

}
,

where ‖P t(s, ·) − π‖ = 1
2

∑
s′′∈Ω |P t(s, s′′) − π(s′′)| is the total variation distance

(see Appendix B for more details). This quantity measures the time needed for the
chain (dynamics) to get close to stationary within an additive factor of ε. The mixing
time of the chain is simply defined as tmix := tmix(1/2), since it is well-known that
tmix(ε) ≤ tmix · log2(1/ε) for any ε.

Appendix B: Total variation distance

The total variation distance between distributions μ and μ̂ on an enumerable state
space Ω is

‖μ − μ̂‖ := 1

2

∑
x∈Ω

| μ(x) − μ̂(x)| =
∑
x∈Ω

μ(x)>μ̂(x)

μ(x) − μ̂(x).

Note that the total variation distance satisfies the usual triangle inequality of distance
measures, i.e.,

‖μ − μ̂‖ ≤ ‖μ − μ′‖ + ‖μ′ − μ̂‖,

for any distributions μ and μ′. Moreover, the following monotonicity properties hold:

‖μP − μ̂P ‖ ≤ ‖μ − μ̂‖, (8)

‖μP − μP̂ ‖ ≤ sup
x∈Ω

‖P(x, ·) − P̂ (x, ·)‖, (9)

‖μP − μ̂P ‖ ≤ sup
x,y∈Ω

‖P(x, ·) − P(y, ·)‖, (10)

where P and P̂ are stochastic matrices. Indeed, as for (8) we have

‖μP − μ̂P ‖ = ‖(μ − μ̂)P ‖ = 1

2

∑
y∈Ω

∣∣∣∣∣
∑
x∈Ω

(μ(x) − μ̂(x))P (x, y)

∣∣∣∣∣
≤ 1

2

∑
x∈Ω

∣∣μ(x) − μ̂(x)
∣∣∑
y∈Ω

P(x, y)

= ‖μ − μ̂‖.
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As for (9) we observe that

‖μP − μP̂ ‖ = ‖μ(P − P̂ )‖ = 1

2

∑
y∈Ω

∣∣∣∣∣
∑
x∈Ω

μ(x)(P (x, y) − P̂ (x, y))

∣∣∣∣∣
≤
∑
y∈Ω

(
1

2

∑
x∈Ω

μ(x)

∣∣∣P(x, y) − P̂ (x, y)

∣∣∣
)

=
∑
x∈Ω

μ(x)

⎛
⎝1

2

∑
y∈Ω

∣∣∣P(x, y) − P̂ (x, y)

∣∣∣
⎞
⎠

≤ sup
x∈Ω

‖P(x, ·) − P̂ (x, ·)‖.
Finally, for (10) we have

‖μP − μ̂P ‖ =
∥∥∥∥∥
∑
z∈Ω

μ(z)
∑
w∈Ω

μ̂(w) (P (z, ·) − P(w, ·))
∥∥∥∥∥

≤
∑
z∈Ω

μ(z)
∑
w∈Ω

μ̂(w)‖P(z, ·) − P(w, ·)‖

≤ sup
x,y∈Ω

‖P(x, ·) − P(y, ·)‖.

Appendix C: Equilibria of logit dynamics and NBR-reducible games

In this section we specialize the approach described in Section 5.2 to the case of logit
dynamics. First of all, the status “h” is immaterial in this case since the dynamics is
by definition Markovian (i.e., the transition probabilities depend only on the current
profile).

We next provide a sufficient condition for which the (equilibrium of) the logit
dynamics of the subgame is a good approximation of the (equilibrium of) the logit
dynamics of the original game. Let G be a game NBR-reducible to Ĝ, and let πβ and
π̂β denote the stationary distributions of the logit dynamics with parameter β for G
and Ĝ, respectively. The following lemma says that πβ and π̂β are close to each other
(in total variation) if β is large enough.

Lemma 5 Let τ̂β be the mixing time of the restricted chain given by the logit dynam-
ics with parameter β, and let p = pβ be the corresponding probability of selecting
a NBR strategy. If limβ→∞(pβ τ̂β) = 0, then for every δ > 0, there exists a constant
βδ such that

‖πβ − π̂β‖ ≤ δ

for all β ≥ βδ .

Proof Let τ = t̂
(β)
mix(δ/8) be the mixing time of the restricted chain. Consider first

two copies of the chain starting in profiles ŝ, ŝ′ ∈ Ĝ and bound the total variation



Theory Comput Syst

after τ time steps:

‖P τ (ŝ, ·) − P τ (ŝ′‖, ·) ≤ ‖P τ (ŝ, ·) − P̂ τ (ŝ‖, ·) + ‖P̂ τ (ŝ, ·) − π̂‖
+‖π̂ − P̂ τ (ŝ′, ·)‖ + ‖P̂ τ (ŝ′, ·) − P τ (ŝ′, ·)‖

≤ 4 · δ

8
= δ/2,

where the last inequality is due to Lemma 4 by taking β sufficiently large (note that
ηpτ = ηpβt

(β)
mix(δ/8) ≤ ηpβτ̂β ln(8/δ), which tends to 0 as β → ∞ by hypothesis).

Consider an interval T of length R ·
⌈

ln(8
/δ)
ln(1/ε)

⌉
. By applying Lemma 2 with k = 
,

(R, ε) = (T , δ/4
) and β sufficiently large we have that for every s ∈ G

Pr
s
(X
T /∈ Ĝ) ≤ δ/8.

Let t	 = 
T + τ and Q = P 
T . Then, for every s, s′ ∈ G

‖π − P t	(s′, ·)‖ ≤ ‖P t	(s, ·) − P t	(s′, ·)‖ = ‖Q(s, ·)P τ − Q(s′, ·)P τ‖
(triangle inequality) ≤ ‖Q(s, ·)P τ − Q̂(s, ·)P τ‖ + ‖Q̂(s, ·)P τ − Q̂(s′, ·)P τ‖

+‖Q̂(s′, ·)P τ − Q(s′, ·)P τ‖,
where, for every s, s′ ∈ G, we set

Q̂(s, s′) =
{

Q(s,s′)
Q(s,Ĝ)

, if s, s′ ∈ Ĝ;
0, otherwise.

By (8) we obtain

‖Q(s, ·)P τ − Q̂(s, ·)P τ‖ ≤ ‖Q(s, ·) − Q̂(s, ·)‖ ≤ Pr
s

(
X
T /∈ Ĝ

)
≤ δ/8.

By (10) we obtain

‖Q̂(s, ·)P τ − Q̂(s′, ·)P τ‖ ≤ max
ŝ,ŝ′∈Ĝ

‖P τ (ŝ, ·) − P τ (ŝ′, ·)‖ ≤ δ/2

and thus ‖π − P t	(s′, ·)‖ ≤ 3δ/4. Finally, for every ŝ ∈ Ĝ, by triangle inequality

‖π − π̂‖ ≤ ‖π − P t	(ŝ, ·)‖ +
∥∥∥P t	(ŝ, ·) − P̂ t	 (ŝ, ·)

∥∥∥+
∥∥∥P̂ t	 (ŝ, ·) − π̂

∥∥∥
≤ 3δ/4 + δ/8 + δ/8 = δ.
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