
What to Verify for Optimal Truthful Mechanisms without
Money

Diodato Ferraioli∗
University of Salerno
dferraioli@unisa.it

Paolo Serafino
Teesside University

p.serafino@tees.ac.uk

Carmine Ventre†
Teesside University

c.ventre@tees.ac.uk

ABSTRACT
We aim at identifying a minimal set of conditions under
which algorithms with good approximation guarantees are
truthful without money. In line with recent literature, we
wish to express such a set via verification assumptions, i.e.,
kind of agents’ misbehavior that can be made impossible by
the designer.

We initiate this research endeavour for the paradigmatic
problem in approximate mechanism design without money,
facility location. It is known how truthfulness imposes (even
severe) losses and how certain notions of verification are un-
helpful in this setting; one is thus left powerless to solve
this problem satisfactorily in presence of selfish agents. We
here address this issue and characterize the minimal set of
verification assumptions needed for the truthfulness of opti-
mal algorithms, for both social cost and max cost objective
functions. En route, we give a host of novel conceptual and
technical contributions ranging from topological notions of
verification to a lower bounding technique for truthful mech-
anisms that connects methods to test truthfulness (i.e., cycle
monotonicity) with approximation guarantee.

1. INTRODUCTION
How good an approximate solution can a truthful (or

strategyproof (SP)) mechanism return for the optimization
problem at hand? This question is an important line of
investigation in mechanism design with monetary transfers
[12, 1, 2] and without [15, 6, 23]. For the latter class of mech-
anisms, more appropriate to digital settings where there
is no currency readily available, the tradeoff between in-
centives and approximation is at the heart of approximate
mechanism design without money research agenda [21]. The
paradigmatic problem in this area is K-facility location: n
selfish agents are located on the real line; we want to place
K facilities on input the n bids of the agents for their loca-
tions on the line. Each agent’s objective is to minimize their
connection cost, defined as the distance between their true
location and the nearest facility. The designer’s objective is

∗This author was supported by the “GNCS – INdAM”.
†This author was supported by EPSRC, through grant
EP/M018113/1.

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to minimize the social cost (i.e., the sum of the connection
costs of all the agents). It is known that the best determinis-
tic SP mechanism can only return an (n−2)-approximation
of the optimum, even for K = 2 [21, 6]. (A different version
of the problem looks at the minimization of the maximum
cost – the bound for K = 2 is, in this case, constant.)

This research leaves little hope to the mechanism designer
facing this problem in presence of selfish agents. In fact, the
designer cannot use computation time as a way out since
practically all (few exceptions are known in the setting with
money, e.g., [2]) the lower bounds to the approximation
of SP mechanisms hold unconditionally, i.e., independently
from the running time of algorithms. The designer could
use randomization but with scarce results. For one, truthful
in expectation mechanisms are vulnerable to different risk
attitude of agents (indeed, SP is guaranteed only as long as
agents are risk neutral). Secondly, mechanisms are subopti-
mal – a constant upper bound is known for K = 2 [15].

In this work, we want to propose a way forward to the
mechanism designer in despair. On one hand, we want to
focus on deterministic mechanisms, so as to avoid to make
assumptions about agents’ attitude to uncertainty. On the
other hand, we wish to provide a small (ideally, minimum)
set of conditions under which algorithms with “good” ap-
proximation guarantees are SP. This would inform the de-
signer about the (minimum) investment in resources (e.g.,
policies, infrastructures, legislation) needed to prevent the
lies that make the algorithms of interest not SP. The idea
to restrict the way agents lie is well established in eco-
nomics [10, 9] and computer science [20, 24, 13, 11, 3, 4,
7]. Therein, this assumption is dubbed verification to ex-
press that certain lies can be somehow verified and made
impossible. Our novelty is the aim of “minimizing” the veri-
fication assumptions needed for the truthfulness of“good”al-
gorithms, rather than showing that a particular verification
leads to the truthfulness of a specific (class of) algorithm(s).

Our contribution
We initiate this line of enquiry and individuate a minimal set
of verification assumptions for which optimum algorithms
for K-facility location are SP.

The assumptions needed for a truthful optimum differ ac-
cordingly to the objective function of interest, social cost or
maximum cost. The first ingredient, common to both sce-
narios, is a ‘return to the origin’ in verification literature. As
in [17] the actual cost of the agents are bound to an insincere
declaration (specifically, an agent overreporting their cost
ends up paying this augmented cost), so here a lying agent

is forced to use the facility closest to her reported location
(rather than closest to her actual location). This notion,
named cluster imposing and first used in [19], generalizes
winner imposing mechanisms considered by [5] and is easy
to implement by defining, e.g., ‘catchment areas’ for facilities
(much like, the system in place for public schooling in many
countries). The second ingredient, common to social and
maximum cost, is a no-underbidding assumption whereby
agents cannot say to be closer to the cluster-imposed fa-
cility than they actually are. This concept rephrases the
main assumption made in related literature (see [20, 13] and
references therein) for problems like combinatorial auctions
and scheduling; it can be readily imposed by the designer
whenever it is possible to measure/prove the distance the
agent covers to reach the facility (in which case, it is, in
fact, possible to simulate longer trips but not shorter ones).

The third ingredient for the result on social cost is a con-
ceptual novelty. Verification is commonly defined only in
relation to (true/reported) costs. We here define a topo-
logical restriction for the access to facilities: agents located
to the left (right) of the facility are not allowed to access
it from the right (left). This assumption, called direction
imposing, further restricts the way agents can misbehave as
an agent with true location t cannot declare b whenever the
algorithm locates the facility closest to b in between t and
b. Direction imposing can be realized whenever it is feasi-
ble to implement a ‘left/right door’ infrastructure for the
facilities. For instance, when facilities are routers relaying
voice/data and the area code of source address cannot be
spoofed, the direction (subnetwork) voice/data have been
transmitted from can be checked.

The third ingredient for the result on max cost (which,
incidentally, holds only for K = 2) falls again in the class of
cost-only verification. We here need to also prevent agents
from reporting to be farther from the cluster-imposed facility
than they actually are. Together with no-underbidding, this
gives rise to a no-cost forging verification that is adequate
in settings in which expense proofs must be provided.

We prove that relaxing any of the assumptions above
leads to suboptimal outcomes (even when the other no-
tions are strengthened) for both objective functions, already
for K = 2. This shows that our (set of) verification(s) is
necessary in the sense that it individuates the incentive-
compatibility (IC) constraints that make optimal algorithms
vulnerable to misreports. Furthermore, our guarantee about
minimal sets of assumptions is, in a sense, the best one can
hope for in this setting. The difficulty here is about “weigh-
ing” an assumption in the set. If all were equally heavy
then our results would actually prove that ours is a mini-
mum set of assumptions, as we prove that relaxing either of
those leads to suboptimal outcomes already forK = 2. How-
ever, one could also weigh an assumption with the number of
IC constraints that a verification assumption removes (i.e.,
by how much an assumption restricts the possible declara-
tions available to agents). From this perspective, though,
it becomes very hard (if possible, at all) to give a com-
pact, useful-to-the-mechanism-designer characterization of
maximum (or, even, maximal in fact) set of IC constraints
according to which algorithm f is SP. Firstly, any such char-
acterization would need to list somehow IC constraints that
f satisfies. Secondly, the mechanism designer has no way
to distinguish feasible IC constraints from infeasible ones.
For example, the no-underbidding verification would not be

needed for f and a pair of declarations t, b whenever an agent
positioned at t would not gain by underbidding the distance
from the location in which f places the facility closest to
b. But since the mechanism only knows b, there is no way
the designer can avoid verifying the pair t, b (there might
in fact be a location c for which c would indeed gain by
underbidding the distance from the facility closest to b).

Discussion on verification
Our verification notions are ex-post as in all – [10] being
an exception – aforementioned related literature, i.e., the
actual outcome of the algorithm (the location of the facil-
ities) is used to define restricted misbehavior. A different
approach is ex-ante verification, where the set of restricted
strategies is defined upon the type (location) of each agent.
So, for example, in the ε-verification of [8] an agent with
true location t can only declare locations in [t − ε, t + ε] –
this ‘symmetric’ verification is, however, ineffective as any
truthful mechanism with verification is truthful without [8].
Our contribution can be cast in that framework as the study
of (the “minimal”) ‘asymmetric’ verification that truthfully
implements optimum algorithms.

As discussed above, our assumptions are necessary: no op-
timal truthful algorithm for K-facility location exists with-
out. When for the application of interest those assumptions
cannot be implemented then one must content oneself with
suboptimal solutions. Our results should then be read in
the negative whenever our verification concepts cannot be
enforced. Note, however, that in principle different defini-
tions of verification could remove the exact same set of IC
constraints we prove to break truthfulness. Nevertheless,
the study of the best way to express those IC constraints
depends on the setting at hand and is outside the scope of
this work. (We stress that facility location is rather general
and thus encodes many different real-life applications.)

More technical contributions
We believe that our results only scratch the surface as we
conjecture that our assumptions are minimal not just for
optimal algorithms but for all “simple” algorithms with con-
stant approximation guarantee to the optimal social cost.
By simple here we mean algorithms that only place the fa-
cilities at K of the locations declared by the agents. These
algorithms are the most natural (e.g., no algorithm has bet-
ter approximation guarantee) especially in the case of deter-
ministic algorithms (cf. known upper bounds); our conjec-
ture (if proved) suggests to look for ‘unnatural’ algorithms
in order to get a good approximation truthfully.

We give some preliminary results towards settling this
conjecture. Among the verification notions needed for a SP
optimum, we drop direction-imposing (arguably, the most
controversial and somewhat less practical of the concepts)
and study the extent to which cost-only verification can be
helpful in this context. We adopt the cycle-monotonicity
technique to dig deeper into the structure of SP algorithms.
This technique features a weighed graph encoding all the
IC constraints. We begin by proving a surprising parallel
between mechanisms with money and no verification, and
mechanisms without money and no-underbidding verifica-
tion (for any problem). A mechanism in the former cate-
gory is SP iff all the cycles of the graph have non-negative
weight [25]. We show that a mechanism in the latter cat-
egory is SP iff all the cycles are comprised of edges weigh-

ing 0. We essentially complement this characterization by
showing that there must be no 0-weight edges outside cycles
for good approximations. Specifically, we prove that a class
of truthful algorithms can have approximation better than
roughly 0.29n if and only if they do not have 0-weight edges
outside cycles of the IC graph, even if we equip the mecha-
nism with cluster-imposing and no-cost-forging verification.
This result showcases a promising and novel approach, being
the first known connection between cycle monotonicity and
approximation.

We complement this lower bound with a mechanism for
K = 2, MedianFurthest, truthful with cluster-imposing
no-underbidding verification and with approximation guar-
antee 0.75n. We further observe that MedianFurthest can
be seen as a composition of two “basic” algorithms (i.e., Me-
dianLeftmost and MedianRightmost) and prove that no
algorithm with better approximation guarantee exists unless
more than two algorithms are composed.

2. MODEL AND PRELIMINARIES
In abstract, we have a set O of feasible solutions and n

selfish agents, each of them having a cost (or type) ti ∈ Di,
Di being the domain of agent i. For ti ∈ Di, ti(X) is the
cost paid by agent i to implement outcome X ∈ O. The type
ti is private knowledge of agent i. A mechanism f takes in
input the types reported by each agent, that is, the bids b =
(b1, . . . , bn), bi ∈ Di being the type reported by agent i, and
returns a feasible solution f(b) ∈ O. We interchangeably
use below the term mechanism and algorithm.

Definition 1. We say that f is a truthful mechanism if
for any bidder i, bi ∈ Di and b−i, the declarations of the
bidders other than i, we have: ti(f(ti,b−i)) ≤ ti(f(b)).

In certain contexts, some bi ∈ Di can be “forgotten” when
defining truthfulness.

Definition 2. A mechanism f with verification V de-
fines a set of allowed lies Mf,V (ti,b−i) for agent i of type
ti. Agent i can report bi iff bi ∈ Mf,V (ti,b−i). If bi 6∈
Mf,V (ti,b−i) then i is caught lying and punished by f .

We assume that being caught lying is a very undesirable be-
havior for the bidder (e.g., in such a case the bidder loses
prestige and the possibility to participate in future mech-
anisms – for simplicity, we assume that in such a case the
bidder will have to pay a fine of infinite value). This way
truthfulness is satisfied directly when bi 6∈Mf,V (ti,b−i).

Cycle monotonicity
We set up a weighted graph for each bidder i depending on f ,
Di, verification paradigm V , and the declarations b−i. Non-
existence of negative-weight edges in this graph guarantees
the truthfulness of f .

More formally, fix mechanism f , bidder i and declarations
b−i. Let V denote the verification paradigm at hand. The
declaration graph with verification V associated to f has a
vertex for each possible declaration in the domain Di and
an arc between ti and bi in Di whenever bi ∈Mf,V (ti,b−i).
The weight of the edge (ti, bi) is defined as −ti(f(ti,b−i))+
ti(f(bi,b−i)) and thus encodes the loss that a bidder whose
type is ti incurs into by declaring bi.

Proposition 1. Each declaration graph with verification
V associated to f does not have negative-weight edges iff f
is a truthful mechanism with verification V .

The proposition above is adapted from [22, 25] to the ver-
ification setting V as in [24]. A corollary of this proposition
is the following algorithmic characterization of truthfulness.

Corollary 1. Algorithm f is truthful with verification
V iff for all ti, bi ∈ Di and b−i, bi ∈ Mf,V (ti,b−i) implies
ti(f(ti,b−i)) ≤ ti(f(bi,b−i)).

K-facility location
In the K-facility location problem, the set of feasible so-
lutions O is comprised of all the K-tuples of possible al-
locations of the facilities whilst the domain of each agent
is the real line. For a given mechanism f and ti ∈ Di,
ti(f(ti,b−i)) = |ti − fti(ti,b−i)|, where fti(ti,b−i) denotes
the location of the facility output by f(ti,b−i) closer to loca-
tion ti (whenever, ti is equidistant to two facilities, ties are
broken arbitrarily). In other words, ti(f(ti,b−i)) denotes
the distance between ti and the location of fti(ti,b−i) also
denoted d(ti, fti(ti,b−i)) below.

We focus on mechanisms f∗ optimizing either the so-
cial cost, i.e., f∗(b) ∈ arg min

X∈O cost(X,b), cost(X,b) =∑n
i=1 bi(X) or the max cost, i.e., f∗(b) ∈ arg min

X∈Omc(X,
b), mc(X,b) = maxi=1,...,n bi(X). We say that f is α-
approximate for either objective if it returns a solution a
factor α away from the corresponding optimum.

Our verification assumptions
We are now ready to formally define the verification assump-
tions discussed in the introduction in relation to K-facility
location.

We say that a mechanism f is cluster-imposing if for every
i of type ti, for all b−i and for all bi ∈MV,f (ti,b−i), ti(f(bi,
b−i)) = |ti − fbi(bi,b−i)| = d(ti, fbi(bi,b−i)), that is, the
facility assigned to i is the one computed by f(bi,b−i) that
is closer to her declaration bi.

For a mechanism f with no-underbidding (no-overbidding,
resp.) verification, ti(f(b)) ≤ bi(f(b)) (ti(f(b)) ≥ bi(f(b)),
resp.) for every i of type ti, for all b−i and for all bi ∈
MV,f (ti,b−i), i.e., agent i of type t cannot underreport
(overreport, resp.) her distance from fbi(bi,b−i). A mecha-
nism f with no-cost-forging verification is a mechanism with
no-underbidding and no-overbidding verification, i.e., for all
bi ∈MV,f (ti,b−i), ti(f(b)) = bi(f(b)).

We say that a mechanism has direction-imposing verifi-
cation if ti, bi < fbi(bi,b−i) or ti, bi > fbi(bi,b−i) or bi =
fbi(bi,b−i) or ti = fbi(bi,b−i), that is, ti and bi are on the
same side of fbi(bi,b−i).

2.1 Strengthening Proposition 1
Given that, like for K-facility location, it may be difficult

to work with the algorithmic characterization of Corollary 1,
we next give a more detailed graph-theoretic characteriza-
tion of truthfulness with no-underbidding verification. Such
a characterization holds not only for the facility location
problem, but for any general setting that uses this notion
of verification (and thus applies to all the aforementioned
papers on ex-post verification).

Theorem 1. A mechanism f is truthful with no-under-
bidding verification iff in each declaration graph associated

to f the cycles are comprised of 0-weight edges while the
edges not belonging to any cycle have non-negative weight.

Proof. One direction easily follows from Proposition 1.
For the opposite direction, fix i and b−i and consider a

cycle C = t0i → · · · → tki = t0i in the declaration graph with
no-underbidding verification associated to f . By definition,
the weight of the cycle is

k−1∑
j=0

−tji (f(tji ,b−i)) + tji (f(tj+1
i ,b−i)).

The existence of edge (tji , t
j+1
i) yields

tji (f(tj+1
i ,b−i)) ≤ tj+1

i (f(tj+1
i ,b−i)).

Since f is truthful, then tji (f(tji ,b−i)) ≤ tji (f(tj+1
i ,b−i)),

for all j. Summing these inequalities, we have

tji (f(tji ,b−i)) = tji (f(tj+1
i ,b−i))

for all j thus proving the theorem.

3. SOCIAL COST
We call f∗ the optimal algorithm for K-facility location

that uses a fixed tie-breaking rule, i.e., for every i, b−i and
ti, bi ∈ Di, if

cost(f∗(t),b) = cost(f∗(b),b) (1)

and

cost(f∗(t), t) = cost(f∗(b), t), (2)

then f∗(b) = f∗(ti,b−i). (Handling ties consistently is a
rather standard assumption in mechanism design, see, e.g.,
[14].) It is easy to check that an optimal algorithm with
fixed tie-breaking always exists. For example, the rule that
chooses the lexicographically minimal allocation among all
optimal allocations satisfies the property above.

Theorem 2. f∗ is a truthful mechanism with cluster-im-
posing, no-underbidding and direction-imposing verification.

Proof. Suppose, by contradiction, that there is an agent
i of type ti, a declaration bi 6= ti and b−i such that

d(ti, f
∗
ti) > d(ti, f

∗
bi), (3)

where f∗ti = f∗ti(t) and f∗bi = f∗bi(b), with t = (ti,b−i).
Since the mechanism has no-underbidding verification

d(ti, f
∗
bi) ≤ d(bi, f

∗
bi). (4)

By direction-imposing verification instead we have that,

ti > f∗bi ⇒ bi ≥ f∗bi ; ti < f∗bi ⇒ bi ≤ f∗bi ;
bi > f∗bi ⇒ ti ≥ f∗bi ; bi < f∗bi ⇒ ti ≤ f∗bi .

(5)

We then distinguish four possible cases.
Case 1. if ti ≥ f∗ti and ti > f∗bi or bi ≥ f∗bi = ti, then,
from (3), it follows ti − f∗ti > ti − f∗bi and thus f∗ti < f∗bi ,
and, from (5), we get bi ≥ f∗bi . The latter implies, along
with (4), ti − f∗bi ≤ bi − f∗bi and thus ti < bi. We conclude
f∗ti < f∗bi ≤ ti < bi.
Case 2. if ti ≤ f∗ti and ti < f∗bi or bi ≤ f∗bi = ti, then, by the
same arguments as above, we have that bi < ti ≤ f∗bi < f∗ti .
Case 3. if ti ≥ f∗ti and ti < f∗bi or bi ≤ f∗bi = ti, then from
(5), it follows that bi ≤ f∗bi . The latter implies, along with

(4), that f∗bi − ti ≤ f∗bi − bi and thus ti > bi. Thus we have
that bi < ti ≤ f∗bi , f

∗
ti < ti and d(ti, f

∗
ti) > d(ti, f

∗
bi

).
Case 4. if ti ≤ f∗ti and ti > f∗bi or bi ≥ f∗bi = ti, then, by
the same arguments, we have f∗bi ≤ ti < bi, f

∗
ti > ti and

d(ti, f
∗
ti) > d(ti, f

∗
bi

).
We will show that these cases can never arise if the facil-

ities are placed by f∗. Consider Case 1: since bi > ti ≥ f∗bi ,
then d(bi, f

∗
bi

) = d(ti, f
∗
bi

) + d(bi, ti). Hence,

cost(f∗(b),b) =
∑
j 6=i

bj(f
∗(b)) + d(ti, f

∗
bi) + d(bi, ti)

≥
∑
j 6=i

bj(f
∗(t)) + d(ti, f

∗
ti) + d(bi, ti)

= cost(f∗(t),b),

where the inequality follows from f∗(t) being the optimal
facility location on input t and from the fact that bi > ti >
f∗ti , so that d(bi, f

∗
ti) = d(ti, f

∗
ti) + d(bi, ti). However, since

f∗(b) is optimal for b then cost(f∗(b),b) ≤ cost(f∗(t),b).
Thus (1) holds. The same argument can be adopted for
proving that (2) also holds. Hence, since f∗ has a fixed tie-
breaking, f∗(b) = f∗(t), contradicting the hypothesis that
f∗bi 6= f∗ti . Observe that the Case 2 is symmetrical and thus
the exact same arguments can be used.

Let us now consider Case 3. If bi ≤ f∗ti < ti, then
d(bi, f

∗
ti) < d(bi, f

∗
bi

). Hence, cost(f∗(b),b) equals∑
j 6=i

bj(f
∗(b)) + d(ti, f

∗
bi) + d(bi, f

∗
bi)− d(ti, f

∗
bi)

>
∑
j 6=i

bj(f
∗(t)) + d(ti, f

∗
ti) + d(bi, f

∗
ti)− d(ti, f

∗
ti)

where the inequality uses that f∗(t) is optimal for t. Ob-
serve that the latter quantity is cost(f∗(t),b), and so we
get a contradiction with the optimality of f∗(b). If instead
f∗ti < bi < ti, then d(bi, f

∗
ti) = d(ti, f

∗
ti)−d(bi, ti). Moreover,

bi < ti ≤ f∗bi yields d(bi, f
∗
bi

) = d(ti, f
∗
bi

) + d(bi, ti). Hence,

cost(f∗(b),b) =
∑
j 6=i

bj(f
∗(b)) + d(ti, f

∗
bi) + d(bi, ti)

>
∑
j 6=i

bj(f
∗(t)) + d(ti, f

∗
ti)− d(bi, ti)

= cost(f∗(t),b),

where the inequality uses optimality of f∗(t) and d(bi, ti) >
0. However, this contradicts the optimality of f∗. Finally,
Case 4 is symmetrical to Case 3 and the same arguments
prove that also this case is impossible.

We next show that it is not possible to prove Theorem 2
by relaxing some verification notions or its hypothesis.

Theorem 3. The assumptions of Theorem 2 are neces-
sary, even for K = 2.

Proof. We begin by proving that if the mechanism is not
cluster-imposing, then the optimal algorithm is not truthful
even if the mechanism uses no-cost-forging and direction-
imposing verification. Note that the definition of direction-
imposing verification given above makes sense only if we
assume that the mechanism is also cluster-imposing. How-
ever, we can still define some weaker (and somewhat less
natural) forms of direction-imposing verification in its ab-
sence. We say that the mechanism has a weak direction-
imposing verification if ti ≥ fti(bi,b−i) iff bi ≥ fbi(bi,b−i)

1 6 5 1 3 2

0 1 2 3 15 30
(a)

1 1 1 n− 6 1 1 1

−4 −3 −2 0 2 3 4

(b)

Figure 1: Instances used in the proof of Theorem 3

and ti ≤ fti(bi,b−i) iff bi ≤ fbi(bi,b−i) (that is, both
the real and the declared position of agent i are on the
same side of their closest facilities); instead, we say that
the mechanism has ex-post direction-imposing verification if
ti ≥ fti(bi,b−i) iff bi ≥ fti(bi,b−i) and ti ≤ fti(bi,b−i) iff
bi ≤ fti(bi,b−i) (i.e., both the real and the declared position
of agent i are on the same side of the facility closest to ti).

Lemma 1. Every optimal algorithm for K-facility loca-
tion is not truthful, even if K = 2, the mechanism has no-
cost-forging, weak direction-imposing and ex-post direction-
imposing verification.

Proof. Consider the truthful instance described in Fig-
ure 1(a) where numbers below (above) the vertex represent
its location (number of players on it). By inspection, the
optimal algorithm places the facilities at 1 and 15. Let i
be the agent at 3; her cost when she is truthful is 2. If she
declares 31, then the optimal algorithm places a facility at
2 and the other at 30. Thus, she decreases her cost from 2
to 1, and is not caught lying by any kind of verification.

The instance can be generalized for any n, by having d(n−
7)/2e in 1, b(n − 7)/2c in 2 and moving the two leftmost
positions from 15 and 30 to l and r, respectively where r/2+
2/3 > l > min{2r/5 + 4/5, (n+ 102)/10}.

We now prove that if the mechanism has not the direction-
imposing verification, then the optimum is not truthful even
if the mechanism is cluster-imposing and has no-cost-forging
verification. Consider the truthful instance described in Fig-
ure 1(b). The optimal algorithm places a facility in 0 and the
second facility either in −3 or in 3. Suppose, w.l.o.g., that
the optimum chooses −3 and consider agent i with truthful
position 2. The cost of i when she truthfully declares her
position is 2. If she declares location 4, then the optimal al-
gorithm places a facility in 0 and the second in 3. Regardless
from the mechanism being cluster-imposing or not, agent i
is assigned to the facility in position 3, decreases her cost
from 2 to 1, and is not caught lying by the no-cost-forging
verification, since the distance from her real position and the
facility is exactly the same as the distance from her declared
position and the facility.

It is not too hard to use the instance in Figure 1(b) to
prove the necessities of no-underbidding verification, and
fixed tie-breaking rule. We omit the details.

3.1 Simplicity and cost-only verification
Let us now focus on simple algorithms f , i.e., algorithms

such that f(b) ⊆ {b1, . . . , bn} for all b. Moreover, let us
consider mechanisms that do not use direction imposing,

but only cluster-imposing, and no-underbidding or no-cost-
forging verification. Next results highlight how hard it is to
design a truthful deterministic mechanism with sub-linear
approximation that uses only non-topological notions of ver-
ification.

A linear lower bound
We first prove a lower bound that holds for a large class
of mechanisms even if we equip them with no-cost-forging
verification along with cluster imposing.

Definition 3. A cluster-imposing algorithm f is 0-edged
if for all b−i, the declaration graph with no-cost forging ver-
ification associated to f has a 0-edge that is not in a cycle.

Roughly speaking, truthful 0-edged algorithms are not
strictly truthful (i.e., truthtelling is not the only dominant
strategy) for all the instances. These algorithms have a
technical interest since they permit an “easy” connection be-
tween cycle monotonicity and approximation lower bounds
(see Section 5 for obstacles and possible approaches to deal
with more general classes of algorithms).

Theorem 4. No 0-edged simple algorithm f has approx-
imation guarantee better than 2n/7.

Proof. Let b−i be the vector in which 5
7
n−1 players are

located at −1, 2
7
n− 1 at 0 and one at 1. Since f is simple,

f(b) ⊂ {−1, 0, 1, bi}. The proof has two steps. We first show
that no matter where player i is located, if f is 0-edged and is
better than 2n/7-approximate (absurdum hypothesis) then
no facility can be placed at 0. We then observe that there
is a bid bi of player i for which f(b) cannot return better
than 2n/7-approximate solutions – a contradiction.
First step. Since f is 0-edged then the declaration graph
associated to f for the given b−i must have a 0-weight edge
that does not belong to a cycle. We next show this is not
the case (i.e., the graph does not have such a 0-weight edge)
when one of the facility is located at 0 and f is better than
2n/7-approximate. Below, we drop b−i from the notation.

For the declaration graph associated to f to have a 0-
weight edge that is not part of a cycle, we need to provide
two declarations of agent i, ti and bi, such that for some
δ > 0 one of the following must be true

fti(ti) = ti − δ <ti < ti + δ = fbi(bi) = bi − δ < bi; (6)

bi < fbi(bi) = bi+δ = ti − δ < ti < fti(ti) = ti + δ, (7)

while for x, y ∈ {ti, bi}, x 6= y, and δ > 0, it must not be

x < fx(x) = x+ δ = fy(y) = y − δ < y. (8)

Indeed, since the graph has a 0-edge, then we need that
there is an agent i, and two different declarations ti and bi,
such that the following two properties occur: (i) agent i has
the same cost when she declares her true type ti and when
she declares bi, i.e., ti(f

∗(b)) = ti(f
∗(t)) = d(ti, f

∗
ti) (let

us denote with δ this value); (ii) agent i is not captured ly-
ing by the verification, i.e., by cluster-imposing verification,
ti(f

∗(b)) = d(ti, f
∗
bi

), and, by no-cost-forging verification we
require that ti(f

∗(b)) = bi(f
∗(b)) = d(bi, f

∗
bi

). Hence, we
have that d(ti, f

∗
ti) = d(ti, f

∗
bi

) = d(bi, f
∗
bi

) = δ. There are
only three ways of placing these four points (ti, f

∗
ti , bi, f

∗
bi

)
on a line so that they satisfy this condition, and they are
exactly the ones described by equations (6)–(8). However,
by definition, the 0-edge must not belong to a cycle. But

in (8), if agent i, whose true type is bi, declares ti then she
is not caught lying and therefore (bi, ti) is an edge of the
graph. In particular, ti → bi → ti is a cycle. It is easy to
check that this does not happen in (6) and (7).

We differentiate a number of cases according to the value
of ti and show that neither (6) nor (7) are possible with-
out (8). Before, however, assume by contradiction that f
is better than 2n/7-approximate and note that f(ti,b−i) ⊂
{−1, 0, ti} for each value of ti.

Let us first consider the case in which ti ≤ −1 (ti > 0,
resp.). Since fti(ti) 6= ti for either (6) or (7) to be true,
we have that f places the second facility at −1 and, con-
sequently, that fti(ti) = −1 (fti(ti) = 0, resp.). Thus, we
cannot have a situation like (6) ((7), resp.) since fti(ti) is
at the right (left, resp.) of ti. We cannot have situation
(7) ((6), resp.) either since when agent i goes to left (right,
resp.) of ti when declaring bi there are not two locations
on which fbi(bi) and bi can be (recall that fbi(bi) 6= bi and
1 /∈ f(bi,b−i), since the approximation is better than 2n/7).

We now deal with the case ti ∈ (−1,−1/2). Using the
same argument as above we conclude that fti(ti) = −1.
Here, we cannot have a situation like (7) given the relative
order of fti(ti) and ti. Concerning situation (6), we note
that when agent i goes to the right by declaring bi the only
possible locations for fbi(bi) are either 0 or 1: in both cases
d(ti, fti(ti)) 6= d(ti, fbi(bi)) as we would instead need.

Consider now the case ti = −1/2. Here, ti is equidistant
from the locations of the two facilities (i.e., −1 and 0 – again,
fti(ti) must be different from ti for otherwise no 0-weight
edge (ti, bi) exists). We show that no matter the value of
fti(ti) if a 0-weight edge (ti, bi) exists according to either
(6) or (7) then also (bi, ti) belongs to the graph; this shows
the existence of a cycle, a contradiction with the fact that
f is 0-edged. Specifically, if fti(ti) is defined as −1 then
bi = 1/2 is a 0-weight edge as from (6) whilst if fti(ti) = 0
then bi = −3/2 realizes the situation (7). However, in both
scenarios the edge (bi, ti) also belongs to the graph.

Finally, take ti ∈ (−1/2, 0]. Here, fti(ti) = 0 and we can-
not have situation (6). As for (7), we note that when agent
i goes to the left by declaring bi the only possible location
for fbi(bi) is −1, but then d(ti, fti(ti)) 6= d(ti, fbi(bi)).
Second step. Let bi = 0. By the argument above we know
that f(b) will locate one facility at −1 and the other at 1
for a cost of 2n

7
. The optimum, however, would only cost 1

by placing one facility at −1 and the other at 0.

A linear upper bound
For K = 2, MedianFurthest locates one facility at the
median location of the instance and the other at the fur-
thest point from the median. Formally, given an instance
b, let bM be the median location of b. If |b| is even we
take bM to be the lower of the two middle values of b. Let
∆L = bM − bL, where bL = mini bi, and ∆R = bR − bM ,
with bR = maxi bi, be the distance of bM from the leftmost
and rightmost location of b, respectively. Algorithm Medi-
anFurthest on input b returns F = (bM , bL) if ∆L > ∆R,
whereas it returns F = (bM , bR) if ∆L ≤ ∆R. First we prove
that this algorithm does not require a very demanding set of
assumptions to be truthful (in particular, Theorem 2 does
not apply since MedianFurthest is not optimal).

Theorem 5. MedianFurthest is truthful with cluster-
imposing and no-underbidding verification.

Proof. Let us assume w.l.o.g. that the output of Me-
dianFurthest on input b is F = (bM , bR) (the case when
F = (bM , bL) is symmetric). Let i be the agent misreport-
ing her location. It is easy to check that ti /∈ {bM , bR}, as
in this case d(F , ti) = 0 and agent i cannot lower her cost
any further. We will denote as b′M and b′R, respectively, the
median and rightmost location of the instance (b′i,b−i), and
the output of MedianFurthest on such instance as F ′.

Let us first suppose that ti ∈ (bM , bR). If b′i < bM
and b′M − b′i ≤ bR − b′M , then MedianFurthest would re-
turn allocation F ′ = (b′M , bR), with b′M < bM , and then
ti(F) ≤ ti(F ′). If b′M − b′i > bR − b′M the algorithm returns
allocation F ′ = (b′M , b

′
i) and the misreport is detected by the

verification step as b′i ∈ F ′. If b′i > bR then F ′ = (bM , b
′
i)

and therefore ti(F) ≤ ti(F ′). Finally, if b′i ∈ (bM , bR), then
the facility location does not change.

Let us now suppose that ti ∈ [bL, bM). Agent i can alter
the output of the algorithm only if either (i) b′i > bM or
(ii) b′i < bL and bM − b′i > ∆R (note that in this case
bM does not change). If case (i) occurs, then b′i ≥ b′M >
bM . Two sub-cases can occur: b′R − b′M ≥ b′M − bL and
b′R − b′M < b′M − bL. If b′R − b′M ≥ b′M − bL, then F ′ =
(b′M , b

′
R) and ti(F ′) > ti(F) (in particular, if b′R 6= bR it

must be that b′R = b′i and the misreport is detected by the
verification step as b′i ∈ F ′). If b′R − b′M < b′M − bL, then
F ′ = (b′M , bL). We observe that since bL ≤ b′M ≤ b′i, agent
i must connect to the facility located at b′M and since b′M ≥
bM > ti then d(ti, b

′
M) ≥ d(b′i, bM). In case (ii) b′i < bL and

bM − b′i > ∆R, then F ′ = (bM , b
′
i). (Note that if bM − b′i ≤

∆R, MedianFurthest returns F = (bM , bR).) We note
that in this case the verification step is capable of detecting
the misreport by agent i, since ti(F ′) = d(ti, b

′
i) > 0 =

d(b′i, b
′
i) = b′i(F ′).

This algorithm is not 0-edged (this is not too hard to
see) yet it has approximation ratio 3

4
n. (The proof is only

sketched due to lack of space.)

Theorem 6. MedianFurthest is 3
4
n–approximate.

Proof Idea. Let us denote by F = (bM , bR) the output
of MedianFurthest on input b (i.e., we assume w.l.o.g.
that ∆R ≥ ∆L, the case ∆R < ∆L being symmetric). Let
Lb = {i : bi ≤ bM ,M 6= i} and Rb = {i : bi ≥ bM ,M 6= i}
denote, respectively, the set of agents to the left and to the
right of bM . We can express the cost of allocation F as
cost(F ,b) = cost(F , Lb)+cost(F , Rb) where cost(F , Lb) =∑
i∈Lb

(bM − bi) denotes the cost incurred by the agents to

the left of bM whereas cost(F , Rb) =
∑
i∈Rb

min{bR−bi, bi−
bM} denotes the cost incurred by the agents to the right of
bM . By definition of bM it follows that |Lb| ≤ n−1

2
and

|Rb| ≤ n
2

. The maximum cost incurred by an agent in Lb is

∆L, hence it follows that cost(F , Lb) ≤ ∆L · n−1
2

. Likewise,

the maximum cost incurred by an agent in Rb is ∆R
2

, so

cost(F , Rb) ≤ ∆R
2
· n

2
. Let us first notice that we need to

consider instances where agents are located at more than 2
different locations, as otherwise MedianFurthest is opti-
mal. Since, by hypothesis, ∆R ≥ ∆L, two cases can occur:
∆L = 0 and ∆L > 0. We prove that in both cases the social
cost of the facility location returned by MedianFurthest
3n
4

-approximates the optimal allocation.

Composition of basic algorithms
For 1 ≤ k < ` ≤ n, a (k, `)-algorithm f , in input b, places
the facilities at the k-th and `-th smallest positions in b.
TwoExtremes [21] is a (1, n)-algorithm and has approxi-
mation n− 2. MedianFurthest can be seen as a composi-
tion of two such basic algorithms: (1, bn/2c) and (bn/2c, n).
Here, by composition we mean that the two basic algorithms
are run and a test chooses which one of their outcomes is
returned (e.g., the better). (Note that MedianFurthest
does not choose the best of the outcomes computed by Me-
dianLeftmost and MedianRightmost in terms of social
cost.) This way of composing algorithms is widely consid-
ered in literature [16] and it is a quite natural and successful
algorithmic techniques. For example, the optimal algorithm
itself can be seen as a composition of a linear number of
(k, `)-algorithms. Hence, by composing sufficiently many of
these basic algorithms we can achieve a good approximation
of the social welfare. But can a ratio better than linear be
achieved with two algorithms?

We next show that MedianFurthest is asymptotically
optimal in this class no matter the test used to choose be-
tween the outcomes the two algorithms and the truthfulness
of the composition. Let the two algorithms be (k, `) and
(k′, `′). We distinguish several cases. First assume that
`+ = max{`, `′} < n; consider the instance wherein `+

agents are in position 0 and n − `+ are in 1. Both algo-
rithms place both facilities in 0 and, hence, the composi-
tion does to. The approximation ratio of the composition is
then unbounded. Suppose now that k− = min{k, k′} > 1;
consider the instance in which k− − 1 agents are in 0 and
n + 1 − k− in 1. Here the composition is unbounded as
well. Consider now that `+ = n and k− = 1. We set
`− = min{`, `′} and k+ = max{k, k′}. Let us first assume
that q = max{k+, `−} ≤ n/2. Then consider the following
instance: q agents in 0, n − q − 1 in 1, and 1 agent in 2.
One algorithm will place a facility in 0 and the second in 2,
whereas the other algorithm will place both facilities in 0.
Hence, the composition has a cost of at least n

2
− 1 while

the optimum costs 1. The approximation ratio of the com-
position is then n

2
− 1. If p = min{k+, `−} ≥ n/2 + 1, then

similar arguments hold for the instance in which 1 agent is
in 0, p − 2 in 1, and n − p + 1 in 2. We are left with the
case that p ≤ n/2 < q. We can distinguishing each of the
possible realizations of k, k′, `, `′ satisfying these conditions
and give the instance establishing the lower bound (in what
follows we will assume w.l.o.g. that k− = k).
Case k = 1, ` = p, k′ = q, `′ = n: n/2 agents in 0 and n/2 in
1. No algorithm (and then their composition) places the
facilities in two different locations. The approximation ratio
of the composition is then unbounded.
Case k = 1, ` = q, k′ = p, `′ = n: 1 agent in 0, n/2 − 1 in 1,
n/2 − 1 in 2, and 1 in 3. Here, one algorithm locates the
facilities in 0 and 2, whereas the other places them in 1 and
3. So, the composition costs n/2 while the optimum costs
2. The approximation ratio of the composition is then n/4.
Case k = 1, ` = n, k′ = p, `′ = q: 1 agent in 0, n− 2 in 1/n,
and 1 in 1. Here, one algorithm locates the facilities in
0 and 1, whereas the other places them both in 1/n. The
composition costs at least n−2

n
while the optimum costs 1/n.

It is not hard to see that the proof above can be adapted
to work even if we assume that no algorithm places two
facilities in the same position. In fact, we can assume that
any set of c > 1 agents assigned to the same position actually

corresponds to c agents assigned to different positions that
are very close to each other (e.g., at distance at most 1/2n

from each other). Moreover, the bound is purely algorithmic
and holds regardless of the truthfulness of the composition.

4. MAX COST
We now consider K = 2. The algorithm OptMinMax

returns an optimal allocation (f0, f1), f0 < f1, minimizing
the maximum cost with a particular tie-breaking rule that
we are going to define next.

Given an allocation (f0, f1), let Sj ⊆ N be the set of

agents that are closer to facility f j than to facility f |j−1|.
Let ∆(Sj) = maxl1,l2∈Sj |bl1−bl2 | denote the maximum dis-
tance between two elements of Sj . Whenever there is more
than one solution minimizing the max cost, OptMinMax
will choose the solution that minimizes ∆(S0) and ∆(S1),
breaking any further tie in favor of minimizing ∆(S0). It
is easy to see that in this last case, i.e., there is a tie and
∆(S0) = ∆(S1), one of the following two assertions must
be true: either (i) ∆(Sj) = 2 · mc(f(b),b) ∀j ∈ {0, 1},
or (ii) ∆(S0) < 2 · mc(f(b),b). Hereinafter, we will de-
note as L(Sj) = minSj and R(Sj) = maxSj . The tie
breaking rule is such that in all cases the facility is al-
located at the central point of the interval [L(Sj), R(Sj)],

namely, f j =
L(Sj)+R(Sj)

2
, j ∈ {0, 1}. Fixed b−i, we let S′j

be the set Sj when agent i reports bi instead of her true
type ti; we also let, as above, fti and fbi be shorthands
for OptMinMaxti(ti,b−i) and OptMinMaxbi(bi,b−i), re-
spectively. Next lemma assumes that the mechanism uses
cluster-imposing no-cost-forging verification.

Lemma 2. Let bi be a misreport by agent i located at ti.
Let j ∈ {0, 1} be such that f j = fbi . If fti 6= fbi , then either
bi ∈ {L(S′j), R(S′j)} or ti /∈ [L(S′j), R(S′j)].

Proof. Two cases can occur: (i) ti ∈ (L(S`), R(S`)) or
(ii) ti ∈ {L(S`), R(S`)} for some ` ∈ {0, 1}.

Let us consider case (i) first. We notice that if either bi ∈
[L(S0), R(S0)] or bi ∈ [L(S1), R(S1)], then ∆(S0) = ∆(S′0)
and ∆(S1) = ∆(S′1) and hence fti = fbi . Let us assume
then that bi /∈ [L(S0), R(S0)] and bi /∈ [L(S1), R(S1)]. Three
cases can occur: bi < L(S0), R(S0) < bi < L(S1) or bi >
R(S1). In all three cases it is immediately evident that bi ∈
{L(S′j), R(S′j)}.

As for case (ii), we can assume that there is no s 6= i
such that ts = ti, as otherwise the same argument as case
(i) applies (i.e., intervals cannot shrink). It is easy to check
that if bi > R(S1) or bi < L(S0) then bi ∈ {R(S′1), L(S′0)}.
Let us consider the case when ti ∈ {L(S0), R(S0)} (the case
when ti ∈ {L(S1), R(S1)} is symmetric). If ti = L(S0) and
L(S0) < bi ≤ R(S0), the thesis holds. Likewise, if ti =
R(S0) and L(S0) ≤ bi < R(S0) the thesis holds. If R(S0) <
bi < L(S1), either bi ∈ {R(S′0), L(S′1)} (if ti = R(S0)) or
ti /∈ S′0 (if ti = L(S0)). If L(S1) ≤ bi ≤ R(S1) and ti =
L(S0) then ti /∈ [L(S′j), R(S′j)]. If L(S1) ≤ bi ≤ R(S1) and
ti = R(S0), it can either be bi = R(S′0), for which the thesis
holds, or L(S′1) ≤ bi, in which case the thesis holds since
ti /∈ [L(S′j), R(S′j)].

Theorem 7. OptMinMax is SP with cluster-imposing
no-cost-forging verification.

Proof. Let us consider the case when agent i lies declar-
ing bi instead of her true type ti. For the sake of contra-
diction, let us assume that OptMinMax is not SP with

cluster-imposing no-cost-forging verification, i.e., d(ti, fti) >
d(ti, fbi). Let us suppose w.l.o.g. that bi ∈ S′j . We note
that the misreport by agent i is not detected by the verifi-
cation step only if |fbi − bi| = |fbi − ti|, which can happen
only if fbi − bi = −(fbi − ti), which implies that fbi =
ti+bi

2
. By Lemma 2, either (i) ti /∈ [L(S′j), R(S′j)] or (ii)

bi ∈ {L(S′j), R(S′j)}. In case (i) we notice that the misre-
port is always detected by the verification step as fbi =
R(S′j)+L(S′j)

2
6= ti+bi

2
, since ti /∈ [L(S′j), R(S′j)] and bi ∈

[L(S′j), R(S′j)]. Hence we can assume bi ∈ {L(S′j), R(S′j)}.
By construction of the algorithm and by the verification
step, this also implies that ti ∈ {L(S′j), R(S′j)}, i.e. ti and
bi are the extremal point of S′j . We need to consider 4 cases.
ti ∈ Sj ∧∆(S′j) > ∆(Sj). By construction of the algorithm

we also have that ti ∈ {L(S′j), R(S′j)} and then

d(ti, fbi) = ∆(S′j)/2 > ∆(Sj)/2 ≥ d(ti, fti)

where: ti ∈ {L(S′j), R(S′j)} implies d(ti, fbi) = ∆(S′j)/2,
∆(S′j)/2 > ∆(Sj)/2 by hypothesis and ∆(Sj)/2 ≥ d(ti, fti)
by construction.
ti ∈ Sj ∧∆(S′j) < ∆(Sj). Here ti ∈ {L(Sj), R(Sj)}. As

above, agent i is not caught by verification only if fbi = bi+ti
2

and S′j = [min{ti, bi}, max{ti, bi}]. We note that agent i is
indeed always caught by the verification step as ∆(S′j) <
∆(Sj) implies that ti /∈ S′j .
ti ∈ S|j−1| ∧∆(S′j) > ∆(Sj). By construction, ∆(S′j) = |ti−

bi| and
∆(S|j−1|)

2
≥ |ti − f |j−1|| = d(ti, fti). The follow-

ing holds by the hypothesis that OptMinMax is not SP:
∆(S|j−1|)

2
≥ |ti − f |j−1|| = d(ti, fti) > d(ti, fbi) = |ti−bi|

2
.

Let us define intervals Tj = S′j , and T|j−1| = S|j−1|\S′j . We

will first prove that the max cost of allocation (f0, f1) is
∆(S|j−1|)

2
. To this aim, we need to prove that ∆(S|j−1|) ≥

∆(Sj). By contradiction, let us suppose ∆(Sj) > ∆(S|j−1|).
From the latter, we get

d(ti, fbi) =
|ti − bi|

2
=

∆(S′j)

2
>

∆(Sj)

2
>

>
∆(S|j−1|)

2
≥ |ti − f |j−1|| = d(ti, fti)

where ∆(S′j)/2 > ∆(Sj)/2 follows by hypothesis, thus con-
tradicting the hypothesis that OptMinMax is not SP.

We will now prove that allocating the facilities in the mid-

dle points of T|j−1| and Tj has a lower cost than
∆(S|j−1|)

2
,

contradicting the optimality of (f0, f1). By construction
∆(T|j−1|) < ∆(S|j−1|). Furthermore, by hypothesis, it fol-
lows:

∆(Tj)

2
=
|ti − bi|

2
< |ti − f |j−1|| ≤

∆(S|j−1|)

2

which implies ∆(Tj) < ∆(S|j−1|).
ti ∈ S|j−1| ∧∆(S′j) < ∆(Sj). The misreport of agent i is not

detected by the verification step if and only if fbi = ti+bi
2

,
which means that S′j ⊆ [min{ti, bi},max{ti, bi}]. Let us
define intervals Tj = S′j and T|j−1| = S|j−1|\S′j . Since
∆(T|j−1|) < ∆(S|j−1|) (by construction, as ti ∈ S′j ∩ S|j−1|)
and ∆(Tj) = ∆(S′j) < ∆(Sj) (by hypothesis), we obtain the
absurd that allocating the facilities in the middle nodes of
intervals Tj and T|j−1| has a lower max cost.

Theorem 8. The assumptions of Theorem 7 are neces-
sary.

F FF ′ F ′

0 1

t2b1 b3

2 5

b2

Figure 2: Instance used in Theorem 8

Proof. Let us drop cluster-imposition and consider a 3-
agent instance, where b1 = 0, t2 = 1 and b3 = 2. The
instance is depicted in Figure 2. The output of OptMin-
Max is (f0 = 0, f1 = 1.5), and the cost for agent 2 is 0.5.
When agent 2 lies declaring b2 = 5 instead of her true type,
then the allocation is (f0 = 1, f1 = 5), and her cost be-
comes 0. The lie is not detected by the verification step as
d(b2, f(b2,b−2)) = d(t2, f(b2,b−2)) = 0.

Let us now maintain cluster-imposition and relax no-cost-
forging to no-underbidding. Consider the instance with 4
agents: b1 = 0, b2 = 1, b3 = ∆ + 1, t4 = ∆ + 2, for ∆ ≥ 2.
OptMinMax allocates one facility on 0.5 and the other on
∆ + 1.5; the cost for agent 4 is 0.5. If agent 4 declares
b4 = ∆ + 2 + ε, 0 < ε < 0.5, OptMinMax allocates the
second facility on ∆+1.5+ ε

2
, yielding a lower cost for agent

4. It is easy to check that this misreport is caught neither
by no-underbidding nor cluster-imposing verification.

It is not hard to use similar ideas to find a counterexample
for cluster-imposition and no-overbidding verification.

5. CONCLUSIONS
We have shown what lies make the computation of opti-

mal solutions for facility location vulnerable to selfish mis-
reports. The set of verification assumptions are shown to
be minimal and hence necessary. The parameters of the in-
stances given in the proofs of Theorems 3 and 8 to prove this
minimality can in fact be optimized to prove constant lower
bounds. However, we conjecture that minimality can be ex-
tended to cover not just optimal algorithms, but all (simple)
algorithms with constant (or even sublinear) approximation
guarantees. We have focused on cost-only verification and
given some results towards proving the conjecture, including
the first use of cycle-monotonicity to establish approxima-
tion lower bounds, cf. Theorem 4. To strengthen this claim,
one would need a property for b−i which allows the con-
struction of the right instance for a larger class of algorithms.
This could be complemented by a better understanding of
constant-approximation algorithms for the social cost (via,
e.g., a deeper look at compositions of basic algorithms).

We leave a number of interesting, challenging open ques-
tions starting from the conjecture above. A first step could
be to focus on Maximal-In-Range (MIR) algorithms [18] –
indeed, it is not too difficult to check that Theorem 2 holds
for any MIR algorithm.

Generalizing our results to different problems or settings
without single-peaked preferences is clearly an interesting
open problem and a further step in the research agenda we
suggest. A first issue one would run into is represented by
the“translation”of direction-imposing verification to diverse
settings. This topological notion exploits the structure of
facility location on the line and might be difficult to apply
to different scenarios. A possible approach could be to look
into different ways to express such a notion (see “Discussion
on verification” paragraph in Section 2).

REFERENCES
[1] G. Christodoulou, E. Koutsoupias, and A. Kovács.

Mechanism design for fractional scheduling on
unrelated machines. In ICALP, pages 40–52, 2007.

[2] A. Daniely, M. Schapira, and S. Gal.
Inapproximability of truthful mechanisms via
generalizations of the VC dimension. In STOC, 2015.

[3] D. Fotakis, P. Krysta, and C. Ventre. Combinatorial
auctions without money. In AAMAS, pages
1029–1036, 2014.

[4] D. Fotakis, P. Krysta, and C. Ventre. The power of
verification for greedy mechanism design. In AAMAS,
pages 307–315, 2015.

[5] D. Fotakis and C. Tzamos. Winner-imposing
strategyproof mechanisms for multiple Facility
Location games. Theoretical Computer Science,
472:90–103, 2013.

[6] D. Fotakis and C. Tzamos. On the power of
deterministic mechanisms for facility location games.
ACM Trans. Economics and Comput.,
2(4):15:1–15:37, 2014.

[7] D. Fotakis, C. Tzamos, and E. Zampetakis. Who to
trust for truthfully maximizing welfare? CoRR,
abs/1507.02301, 2015.

[8] D. Fotakis and E. Zampetakis. Truthfulness flooded
domains and the power of verification for mechanism
design. ACM Trans. Economics and Comput., 3(4):20,
2015.

[9] C. Gorkem. Mechanism design with weaker incentive
compatibility constraints. Games and Economic
Behavior, 56(1):37–44, 2006.

[10] J. R. Green and J. Laffont. Partially Verifiable
Information and Mechanism Design. The Review of
Economic Studies, 53:447–456, 1986.

[11] E. Koutsoupias. Scheduling without payments. Theory
Comput. Syst., 54(3):375–387, 2014.

[12] E. Koutsoupias and A. Vidali. A lower bound of 1+Φ
for truthful scheduling mechanisms. Algorithmica,
66(1):211–223, 2013.

[13] P. Krysta and C. Ventre. Combinatorial auctions with
verification are tractable. Theoretical Computer
Science, 571:21–35, 2015.

[14] D. J. Lehmann, L. O’Callaghan, and Y. Shoham.
Truth revelation in approximately efficient
combinatorial auctions. J. ACM, 49(5):577–602, 2002.

[15] P. Lu, X. Sun, Y. Wang, and Z. Zhu. Asymptotically
Optimal Strategy-Proof Mechanisms for Two-Facility
Games. In EC, pages 315–324, 2010.

[16] A. Mu’alem and N. Nisan. Truthful approximation
mechanisms for restricted combinatorial auctions.
Games and Economic Behavior, 64(2):612–631, 2008.

[17] N. Nisan and A. Ronen. Algorithmic Mechanism
Design. Games and Economic Behavior, 35:166–196,
2001.

[18] N. Nisan and A. Ronen. Computationally feasible
VCG mechanisms. J. Artif. Intell. Res. (JAIR),
29:19–47, 2007.

[19] K. Nissim, R. Smorodinsky, and M. Tennenholtz.
Approximately optimal mechanism design via
Differential Privacy. In ITCS, pages 203–213, 2012.

[20] P. Penna and C. Ventre. Optimal collusion-resistant
mechanisms with verification. Games and Economic
Behavior, 86:491–509, 2014.

[21] A. D. Procaccia and M. Tennenholtz. Approximate
mechanism design without money. ACM Trans.
Economics and Comput., 1(4):18, 2013.

[22] J. Rochet. A Condition for Rationalizability in a
Quasi-Linear Context. Journal of Mathematical
Economics, 16:191–200, 1987.

[23] P. Serafino and C. Ventre. Truthful mechanisms
without money for non-utilitarian heterogeneous
facility location. In AAAI, pages 1029–1035, 2015.

[24] C. Ventre. Truthful optimization using mechanisms
with verification. Theoretical Computer Science,
518:64–79, 2014.

[25] R. Vohra. Mechanism Design: A Linear Programming
Approach. Cambridge University Press, 2011.

