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Abstract. We study the revenue performance of sequential posted price mechanisms and some natural
extensions, for a general setting where the valuations of the buyers are drawn from a correlated distribu-
tion. Sequential posted price mechanisms are conceptually simple mechanisms that work by proposing a
“take-it-or-leave-it” offer to each buyer. We apply sequential posted price mechanisms to single-parameter
multi-unit settings in which each buyer demands only one item and the mechanism can assign the service to
at most k of the buyers. For standard sequential posted price mechanisms, we prove that with the valuation
distribution having finite support, no sequential posted price mechanism can extract a constant fraction of
the optimal expected revenue, even with unlimited supply. We extend this result to the the case of a con-
tinuous valuation distribution when various standard assumptions hold simultaneously. In fact, it turns out
that the best fraction of the optimal revenue that is extractable by a sequential posted price mechanism is
proportional to the ratio of the highest and lowest possible valuation. We prove that for two simple gen-
eralizations of these mechanisms, a better revenue performance can be achieved: if the sequential posted
price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valu-
ation, then a Ω(1/max{1, d}) fraction of the optimal revenue can be extracted, where d denotes the “degree
of dependence” of the valuations, ranging from complete independence (d = 0) to arbitrary dependence
(d = n − 1). When we generalize the sequential posted price mechanisms further, such that the mechanism
has the ability to make a take-it-or-leave-it offer to the i-th buyer that depends on the valuations of all buyers
except i, we prove that a constant fraction (2 −

√
e)/4 ≈ 0.088 of the optimal revenue can be always be

extracted.

1 Introduction

A large body of literature in the field of mechanism design focuses on the design of auctions that
are optimal with respect some given objective function, such as maximizing the social welfare or
the auctioneer’s revenue. This literature mainly considered direct revelation mechanisms, in which
each buyer submits a bid that represents his valuation for getting the service, and the mechanism
determines the winners and the payments. The reason for this is the revelation principle (see, e.g.,
[8]), which implies that one may study only direct revelation mechanisms for many purposes. Some
of the most celebrated mechanisms follow this approach, such as the VCG mechanism [29,11,16]
and the Myerson mechanism [23].

A natural assumption behind these mechanisms is that buyers will submit truthfully whenever the
utility they take with the truthful bid is at least as high as the utility they may take with a different bid.
However, it has often been acknowledged that such an assumption may be too strong in a real world
setting. In particular, Sandholm and Gilpin [27] highlight that this assumption usually fails because
of: 1) a buyer’s unwillingness to fully specify their values, 2) a buyer’s unwillingness to participate in
ill understood, complex, unintuitive auction mechanisms, and 3) irrationality of a buyer, which leads
him to underbid even when there is nothing to be gained from this behavior.

This has recently motivated the research about auction mechanisms that are conceptually simple.
Among these, the class of sequential posted price mechanisms [10] is particularly attractive. First
studied by Sandholm and Gilpin [27] (and called “take-it-or-leave-it mechanisms”), these mecha-
nisms work by iteratively selecting a buyer that has not been selected previously, and offering him
a price. The buyer may then accept or reject that price. When the buyer accepts, he is allocated the
service. Otherwise, the mechanism does not allocate the service to the buyer. In the sequential posted-
price mechanism we allow both the choice of buyer and the price offered to that buyer to depend on



the decisions of the previously selected buyers (and the prior knowledge about the buyers’ valua-
tions). Also, randomization in the choice of the buyer and in the charged price is allowed. Sequential
posted price mechanisms are thus conceptually simple and buyers do not have to reveal their valu-
ations. Moreover, they possess a trivial dominant strategy (i.e., buyers do not have to take strategic
decisions) and are individually rational (i.e., participation in such an auction is never harmful to the
buyer).

Sequential posted price mechanisms have been mainly studied for the setting where the valuations
of the buyers are each drawn independently from publicly known buyer-specific distributions, called
the independent values setting. In this paper, we study a much more general setting, and assume that
the entire vector of valuations is drawn from one publicly known distribution, which allows for arbi-
trarily complex dependencies among the valuations of the buyers. This setting is commonly known
as the correlated values setting. Our goal is to investigate the revenue guarantees of sequential posted
price mechanisms in the correlated value setting. We quantify the quality of a mechanism by compar-
ing its expected revenue to that of the optimal mechanism, that achieves the highest expected revenue
among all dominant strategy incentive compatible and ex-post individually rational mechanisms (see
the definitions in Section 2).

We assume a standard Bayesian, transferable, quasi-linear utility model and we study the unit
demand, single parameter, multi-unit setting: there is one service (or type of item) being provided
by the auctioneer, there are n buyers each interested in receiving the service once, and the valuation
of each buyer consists of a single number that reflects to what extent a buyer would profit from re-
ceiving the service provided by the auctioneer. The auctioneer can charge a price to a bidder, so that
the utility of a bidder is his valuation (in case he gets the service), minus the charged price. In this
paper, our focus is on the k-limited supply setting, where service can be provided to at most k of the
buyers. This is an important setting because it is a natural constraint in many realistic scenarios, and
it contains two fundamental special cases: the unit supply setting (where k = 1), and the unlimited
supply setting where k = n.

Related Work. Recently, there has been substantial work [19,18,4,26,13] on simple mechanisms.
Babaioff et al. [4] highlight the importance of understanding the relative strength of simple versus
complex mechanisms with regard to revenue maximization.

As described above, sequential posted price mechanisms are an example of such a simple class
of mechanisms. Sandholm and Gilpin [27] have been the first ones to study sequential posted price
mechanisms. They give experimental results for the case in which values are independently drawn
from the uniform distribution in [0, 1]. Moreover, they consider the case where multiple offers can be
made to a bidder, and study the equilibria that arise from this. Blumrosen and Holenstein [7] compare
fixed price (called symmetric auctions), sequential posted price (called discriminatory auctions) and
the optimal mechanism for valuations drawn from a wide class of i.i.d distributions. Babaioff et al.
[2] consider prior-independent posted price mechanisms with k-limited supply for the setting where
the only information known is that all valuations are independently drawn from the same distribution
with support [0, 1]. Posted-price mechanisms have also been previously studied in [20,5,6], albeit
for a non-Bayesian, on-line setting. In a recent work Feldman et al. [15] study on-line posted price
mechanisms for combinatorial auctions when valuations are independently drawn.

The works of Chawla et al. [10] and Gupta and Nagarajan [17] are closest to our present work,
although they only consider sequential posted price mechanisms in the independent values setting. In
particular, Chawla et al. [10] prove that such mechanisms can extract a constant factor of the optimal
revenue for single and multiple parameter settings under various constraints on the allocations. They
also consider on-line (called order-oblivious in [10]) sequential posted price mechanisms in which the
order of the buyers is fixed and adversarially determined. They use on-line mechanisms to establish
results for the more general multi-parameter case. Yan [30], and Kleinberg and Weinberg [21] build
on this work and strengthen some of the results of Chawla et al. [10].



Gupta and Nagarajan [17] introduce a more abstract stochastic probing problem that includes
Bayesian sequential posted price mechanisms. Their approximation bounds were later improved by
Adamczyk et al. [1] who in particular matched the approximation of Chawla et al. [10] for single
matroid settings.

All previous work only consider the independent setting. In this work we instead focus on the
correlated setting. The lookahead mechanism of Ronen [24] is a fundamental reference for the cor-
related setting. It also resembles some of the mechanisms considered in this work. However, as we
will indicate, it turns out to be different in substantial ways. Cremer and McLean [12] made a fun-
damental contribution to auction theory in the correlated value setting, by exactly characterizing for
which valuation distributions it is possible to extract the full optimal social welfare as revenue. Se-
gal [28] gives a characterization of optimal ex-post incentive compatible and ex-post individually
rational optimal mechanisms. Roughgarden and Talgam-Cohen [25] study the even more general in-
terdependent setting. They show how to extend the Myerson mechanism to this setting for various
assumptions on the valuation distribution. There is now a substantial literature [14,25,9] that develops
mechanisms with good approximation guarantees for revenue maximization in the correlated setting.
These mechanisms build on the lookahead mechanism of Ronen [24] and thus they also differ from
the mechanisms proposed in this work.

Contributions and Outline. We define some preliminaries and notation in Section 2. In Section
3.1 we give a simple sequence of instances which demonstrate that for (unrestricted) correlated dis-
tributions, sequential posted price (SPP) mechanisms cannot obtain a constant approximation with
respect to the revenue obtained by the optimal dominant strategy incentive compatible and ex-post
individually rational mechanism. This holds for any value of k (i.e, the size of the supply). We extend
this impossibility result by proving that a constant approximation is impossible to achieve even when
we assume that the valuation distribution is continuous and satisfies all of the following conditions
simultaneously: the valuation distribution is supported everywhere, is entirely symmetric, satisfies
regularity, satisfies the monotone hazard rate condition, satisfies affiliation, all the induced marginal
distributions have finite expectation, and all the conditional marginal distributions are non-zero ev-
erywhere.

Given these negative results, we consider a generalization of sequential posted price mechanisms
that are more suitable for settings with limited dependence among the buyers’ valuations: enhanced
sequential posted price (ESPP) mechanisms. An ESPP mechanism works by iteratively selecting a
buyer that has not been selected previously. The auctioneer can either offer the selected buyer a price
or ask him to report his valuation. As in sequential posted price mechanisms, if the buyer is offered
a price, then he may accept or reject that price. When the buyer accepts, he is allocated the service.
Otherwise, the mechanism does not allocate the service to the buyer. If instead, the buyer is asked
to report his valuation, then the mechanism does not allocate him the service. Note that the ESPP
mechanism requires that some fraction of buyers reveal their valuation truthfully. Thus, the property
that the bidders not have to reveal their preferences is partially sacrificed, for a more powerful class
of mechanisms and (as we will see) a better revenue performance. In practice, such mechanisms
can be adjusted by providing a bidder with a small monetary reward when he is asked to reveal his
valuation1.

For the ESPP mechanisms, again there are instances in which the revenue is not within a constant
fraction of the optimal revenue. However, these mechanisms can extract a fraction Θ(1/n) of the
optimal revenue, regardless of the valuation distribution.

1 In some realistic scenarios, the valuation of some buyers may be known a priori to the auctioneer (through, for example,
the repetition of auctions or accounting and profiling operations), which can be exploited accordingly. While there is
no incentive to lie about a valuation in an ESPP mechanism, there is also no incentive to tell the truth. This problem is
addressed in Appendix D.



This result seems to suggest that to achieve a constant approximation of the optimal revenue it is
necessary to collect all the bids truthfully. Consistent with this hypothesis, we prove that a constant
fraction of the optimal revenue can be extracted by dominant strategy IC blind offer mechanisms:
these mechanisms inherit all the limitations of sequential posted price mechanisms (i.e., buyers are
considered sequentially in an order independent of any bids; buyers are only offered a price when se-
lected; and the buyer gets the service only if it accepts the offered price), except that the price offered
to a bidder i may now depend on the bids submitted by all players other than i. This generalization
sacrifices entirely the property that buyers valuations need not be revealed. Blind offer mechanisms
are thus necessarily direct revelation mechanisms. However, this comes with the reward of a revenue
that is only a constant factor away from optimal. In conclusion, blind offer mechanisms achieve a
constant approximation of the optimal revenue, largely preserve the conceptual simplicity of sequen-
tial posted price mechanisms, and are easy to grasp for the buyers participating in the auction. We
stress that, even if blind offer mechanisms sacrifice some simplicity (and practicality), we still find it
theoretically interesting that a mechanism that allocates items to buyers in any order and thus not nec-
essarily in an order that maximizes profit, say as in [24], is able to achieve a constant approximation
of the optimal revenue even with correlated valuations. Moreover, blind offer mechanisms provide
the intermediate step en-route to establishing revenue approximation bounds for other mechanisms.
We will show how blind offer mechanisms serve this purpose in Section 4.

We highlight that our positive results do not make any assumptions on the marginal valuation
distributions of the buyers nor the type of correlation among the buyers. However, in Section 4 we
consider the case in which the degree of dependence among the buyers is limited. In particular, we
introduce the notion of d-dimensionally dependent distributions. This notion informally requires that
for each buyer i there is a set S i of d other buyers such that the distribution of i’s valuation when
conditioning on the vector of other buyers’ valuations can likewise be obtained by only conditioning
on the valuations of S i. Thus, this notion induces a hierarchy of n classes of valuation distributions
with increasing degrees of dependence among the buyers: for d = 0 the buyers have independent
valuations, while the other extreme d = n − 1 implies that the valuations may be dependent in
arbitrarily complex ways. Note that d-dimensional dependence does not require that the marginal
valuation distributions of the buyers themselves satisfy any particular property, and neither does
it require anything from the type of correlation that may exist among the buyers. This stands in
contrast with commonly made assumptions such as symmetry, affiliation, the monotone-hazard rate
assumption, and regularity, that is often encountered in the auction theory and mechanism design
literature.

Our main positive result for ESPP mechanisms then states that if the valuation distribution is
d-dimensionally dependent, there exists an ESPP mechanism that extracts an Ω(1/d) fraction of the
optimal revenue. The proof of this result consists of three key ingredients: (i) An upper bound on the
optimal ex-post IC, ex-post IR revenue in terms of the solution of a linear program. This part of the
proof generalizes a linear programming characterization introduced by Gupta and Nagarajan [17] for
the independent distribution setting. (ii) A proof that incentive compatible blind offer mechanisms
are powerful enough to extract a constant fraction of the optimal revenue of any instance. This makes
crucial use of the linear program mentioned above. (iii) A conversion lemma showing that blind offer
mechanisms can be turned into ESPP mechanisms while maintaining a fractionΩ(1/d) of the revenue
of the blind offer mechanism.

Additionally, we note that all of our negative results hold for randomized mechanisms, whereas
our positive results only require randomization in a limited way. In particular, our positive result for
blind offer mechanisms only requires randomized pricing for k < n and works for any ordering in
which the agents are picked, as long as the mechanism knows the ordering. Our positive result for
ESPP mechanisms requires randomized pricing and the assumption that the mechanism can pick a
uniformly random ordering of the agents (i.e., holds in the random order model ROM of arrivals).



2 Preliminaries and Notation

For a ∈ N, [a] denotes the set {1, . . . , a}. When ~v is a vector and a is an arbitrary element, we denote
by (a,~v−i) the vector obtained by replacing vi with a.

We face a setting where an auctioneer provides a service to n buyers, and is able to serve at most
k of the buyers. The buyers have valuations for the service offered, which are drawn from a valuation
distribution π, i.e., a probability distribution on Rn

≥0. We will assume throughout this paper that π is
discrete, except for in Theorem 2, which is a statement about continuous distributions.

We will use the following notation for conditional and marginal probability distributions. Let π
be a discrete finite probability distribution on Rn, let i ∈ [n], S ⊂ [n] and ~v ∈ Rn. For an arbitrary
probability distribution π, denote by supp(π) the support of π, by ~vS the vector obtained by removing
from ~v the coordinates in [n] \ S , by πS the distribution induced by drawing a vector from π and
removing the coordinates corresponding to index set [n] \ S , by π~vS the distribution of π conditioned
on the event that ~vS is the vector of values on the coordinates corresponding to index set S , and by
πi,~vS the marginal distribution of the coordinate of π~vS that corresponds to buyer i. In the subscripts
we sometimes write i instead of {i} and −i instead of [n] \ {i} for notational convenience.

Definition 1. An instance is a triple (n, π, k), where n is the number of participating buyers, π is the
valuation distribution, and k ∈ N≥1 is the supply, i.e., the number of services that the auctioneer may
allocate to the buyers. A deterministic mechanism f is a function from ×i∈[n]Σi to {0, 1}n × Rn

≥0, for
any choice of strategy sets Σi, i ∈ [n]. When Σi = supp(πi) for all i ∈ [n], mechanism f is called a
deterministic direct revelation mechanism. A randomized mechanism M is a probability distribution
over deterministic mechanisms. For i ∈ [n] and ~s ∈ × j∈[n]Σ j, we will denote i’s expected allocation
E f∼M[ f (~s)i] by xi(~s) and i’s expected payment E f∼M[ f (~s)n+i] by pi(~s). For i ∈ [n] and ~s ∈ × j∈[n]Σ j,
the expected utility of buyer i is xi(~s)vi − pi(~s).

The auctioneer is interested in maximizing the revenue
∑

i∈[n] pi(~s), and is assumed to have full
knowledge of the valuation distribution, but not of the actual valuations of the buyers.

Definition 2. Mechanism M is dominant strategy incentive compatible (dominant strategy IC) iff for
all i ∈ [n] and ~v ∈ × j∈[n]supp(π j) and ~v ∈ supp(π),

xi(vi,~v−i)vi − pi(vi,~v−i) ≥ xi(~v)vi − pi(~v).

Mechanism M is ex-post individually rational (ex-post IR) iff for all i ∈ [n] and ~v ∈ supp(π),

xi(v)vi − pi(v) ≥ 0.

For convenience we usually will not treat a mechanism as a probability distribution over outcomes,
but rather as the result of a randomized procedure that interacts in some way with the buyers. In this
case we say that a mechanism is implemented by that procedure.

Definition 3. A sequential posted price (SPP) mechanism for an instance (n, π, k) is any mechanism
that is implementable by iteratively selecting a buyer i ∈ [n] that has not been selected in a previous
iteration, and proposing a price pi for the service, which the buyer may accept or reject. If i accepts,
he gets the service and pays pi, resulting in a utility of vi − pi for i. If i rejects, he pays nothing and
does not get the service, resulting in a utility of 0 for i. Once the number of buyers that have accepted
an offer equals k, the process terminates. Randomization in the selection of the buyers and prices is
allowed.

We will initially be concerned with only sequential posted price mechanisms. Later in the paper we
define and study the two generalizations of sequential posted price mechanisms that we mentioned in
the introduction.



Our focus in this paper is on the maximum expected revenue of the SPP mechanisms, and some
of its generalizations. Note that each buyer in a SPP mechanism has an obvious dominant strategy:
he will accept whenever the price offered to him does not exceed his valuation, and he will reject
otherwise. Also, a buyer always ends up with a non-negative utility when participating in a SPP
mechanism. Thus, by the revelation principle (see, e.g., [8]), a SPP mechanism can be converted into
a dominant strategy IC and ex-post IR direct revelation mechanism with the same expected revenue.
Therefore, we compare the maximum expected revenue REV(M) achieved by an SPP mechanism
M to OPT , where OPT is defined as the maximum expected revenue that can be obtained by a
mechanism that is dominant strategy IC and ex-post IR.

A more general solution concept is formed by the ex-post incentive compatible, ex-post individ-
ually rational mechanisms.

Definition 4. Let (n, π, k) be an instance and M be a randomized direct revelation mechanism for that
instance. Mechanism M is ex-post incentive compatible (ex-post IC) iff for all i ∈ [n], si ∈ supp(πi)
and ~v ∈ supp(π),

xi(~v)vi − pi(~v) ≥ xi(si,~v−i)vi − pi(si,~v−i).

In other words, a mechanism is ex-post IC if it is a pure equilibrium for the buyers to always report
their valuation. In this work we sometimes compare the expected revenue of our (dominant strategy
IC and ex-post IR) mechanisms to the maximum expected revenue of the more general class of ex-
post IC, ex-post IR mechanisms. This strengthens our positive results. We refer the interested reader
to [25] for a further discussion of and comparison between various solution concepts.

3 Sequential Posted Price Mechanisms

We are interested in designing a posted price mechanism that, for any given n and valuation dis-
tribution π, achieves an expected revenue that is a constant approximation of the optimal expected
revenue achievable by a dominant strategy IC, ex-post IR mechanism. Theorem 1 shows that this is
unfortunately impossible. Full proofs for all proof sketches in subsection 3.1 and section 4 can be
found in Appendix F.

3.1 Non-Existence of Good Posted Price Mechanisms

Theorem 1. For all n ∈ N≥2, there exists a valuation distribution π such that for all k ∈ [n] there does
not exist a sequential posted price mechanism for instance (n, π, k) that extracts a constant fraction
of the expected revenue of the optimal dominant strategy IC, ex-post IR mechanism.

Proof (sketch). Fix m ∈ N≥1 arbitrarily, and consider the case where n = 1 and the valuation v1 of the
single buyer is taken from {1/a : a ∈ [m]} distributed such that π1(1/a) = 1/m for all a ∈ [m]. In this
setting, an SPP mechanism will offer the buyer a price p, which the buyer accepts iff v1 ≥ p. After
that, the mechanism terminates. We show that this mechanism achieve only a fraction 1

H(m) of the
social welfare. We then extend this example to a setting where the expected revenue of the optimal
dominant strategy IC, ex-post IR mechanism is equal to the expected optimal social welfare. ut

We prove in Appendix B that the above impossibility result holds also in the continuous case,
even if we assume that a large set of popular assumptions hold simultaneously. More precisely, we
prove the following.

Theorem 2. There exists a valuation distribution π such that

1. π has support [0, 1]n;
2. the expectation E~v∼π[vi] is finite for any i ∈ [n];
3. π is symmetric in all its arguments;



4. π is continuous and nowhere zero on [0, 1]n;
5. the conditional marginal densities πi|~v−i are nowhere zero for any ~v−i ∈ [0, 1]n−1 and any i ∈ [n];
6. π has a monotone hazard rate and is regular;
7. π satisfies affiliation.

for which there does not exist a sequential posted price mechanism in which valuations are distributed
according to π that extracts more than a constant fraction of the expected revenue of the optimal
dominant strategy IC, ex-post IR mechanism.

For precise definitions of these notions, see Appendix A. Roughgarden and Talgam-Cohen [25]
showed that when all these assumptions are simultaneously satisfied, the optimal ex-post IC and
ex-post IR mechanism is the Myerson mechanism; that is, the mechanism that is optimal in the
independent value setting. Thus, these conditions make the correlated setting in some sense similar
to the independent one with respect to revenue maximization. Yet our result show that, whereas
posted price mechanism can achieve a constant approximation revenue for independent distributions,
this result does not extend to correlated distributions.

3.2 A revenue guarantee for sequential posted price mechanisms

More precisely, in our lower bound instances constructed in the proof of Theorem 1, it is the case
that the expected revenue extracted by every posted price mechanism is a Θ(1/ log(r)) fraction of the
optimal expected revenue, where r is the ratio between the highest valuation and the lowest valuation
in the support of the valuation distribution. A natural question that arises is whether this is the worst
possible instance in terms of revenue extracted, as a function of r. It turns out that this is indeed the
case, asymptotically. The proofs use a standard bucketing technique (see, e.g., [3]) and can be found
in Appendix C.

We start with the unit supply case.

Definition 5. For a valuation distribution π on Rn, let vmax
π and vmin

π be max{vi : v ∈ supp(π), i ∈ [n]}
and min{max{vi : i ∈ [n]} : v ∈ supp(π)} respectively. Let rπ = vmax

π /vmin
π be the ratio between the

highest and lowest coordinate-wise maximum valuation in the support of π.

Proposition 1. Let n ∈ N≥1, and let π be a probability distribution on Rn. For the unit supply case
there exists a sequential posted price mechanism that, when run on instance (n, π, 1), extracts in
expectation at least an Ω(1/ log(rπ)) fraction of the expected revenue of the expected optimal social
welfare (and therefore also of the expected revenue of the optimal dominant strategy IC and ex-post
IR auction).

This result can be generalized to yield revenue bounds for the case of k-limited supply, where k > 1.
We prove a more general variant of the above in the appendix.

The above result does not always guarantee a good revenue; for example in the extreme case
where vmin

π = 0. However, it is straightforward to generalize the above theorem such that it becomes
useful for a much bigger family of probability distributions. We refer to the appendix for more details
on how to do this.

A better result can be given for the unlimited supply case.

Definition 6. For a valuation distribution π on Rn and any i ∈ [n], let vmax
π,i and vmin

π,i be max{vi : ~v ∈
supp(π)} and min{vi : ~v ∈ supp(π)} respectively. Let rπ,i = vmax

π,i /v
min
π,i , be the ratio between the highest

and lowest valuation of buyer i in the support of π.

Proposition 2. Let n ∈ N≥1, and let π be a probability distribution on Rn. There exists a sequen-
tial posted price mechanism that, when run on instance (n, π, n), extracts in expectation at least an
Ω(1/ log(max{rπ,i : i ∈ [n]})) fraction of the expected revenue of the expected optimal social wel-
fare (and therefore also the expected revenue of the optimal dominant strategy IC and ex-post IR
mechanism).



Clearly, the stated bound of O(1/ log(max{rπ,i : i ∈ [n]})) is very crude. For most practical settings,
we expect that it is possible to do a much sharper revenue analysis of the mechanisms in the proofs
of the above propositions, by taking the particular valuation distribution into account. Moreover,
as suggested above, also for the unlimited supply case it is possible to tweak the mechanism in
a straightforward way in order to achieve a good revenue in cases where the ratios rπ,i are very
large. Finally, note that the mechanisms in the proofs of these two propositions do not take into
account any dependence and correlation among the valuations of the buyers. When provided with
a particular valuation distribution, a better revenue and sharper analysis may be obtained by taking
such dependence into account, and adapting the mechanisms accordingly.

4 Enhanced Sequential Posted Price Mechanisms

The negative results on sequential posted price mechanisms suggest that it is necessary for a mecha-
nism to have a means to retrieve the valuations of some of the buyers in order to improve the revenue
performance. We accordingly propose a generalization of sequential posted price mechanisms, in
such a way that they possess the ability to retrieve valuations of some buyers.

Definition 7. Specifically, an enhanced sequential posted price (ESPP) mechanism for an instance
(n, π, k) is a mechanism that can be implemented by iteratively selecting a buyer i ∈ [n] that has not
been selected in a previous iteration, and performing exactly one of the following actions on buyer i:

– Propose service at price pi to buyer i, which the buyer may accept or reject. If i accepts, he gets
the service and pays pi, resulting in a utility of vi − pi for i. If i rejects, he pays nothing and does
not get the service, resulting in a utility of 0 for i.

– Ask i for his valuation (in which case the buyer pays nothing and does not get service).

Randomization is allowed.

This generalization is still dominant strategy IC and ex-post IR (that is, the revelation principle allows
us to convert them to dominant strategy IC, ex-post IR direct revelation mechanisms).

Next we analyze the revenue performance of ESPP mechanisms. For this class of mechanisms
we prove that, it is unfortunately still the case that no constant fraction of the optimal revenue can be
extracted. Specifically, the next section establishes an O(1/n) bound for ESPP mechanisms. However,
ESPP mechanisms turn out to be more powerful than the standard sequential posted price. Indeed,
contrary to SPP mechanisms, the ESPP mechanisms can be shown to extract a fraction of the optimal
revenue that is independent of the valuation distribution. More precisely, the O(1/n) bound turns out
to be asymptotically tight. Our main positive result for ESPP mechanisms is that when dependence
of the valuation among the buyers is limited, then a constant fraction of the optimal revenue can be
extracted. Specifically, we will define the concept of d-dimensional dependence and prove that for a
d-dimensionally dependent instance, there is an ESPP mechanism that extracts an Ω(1/d) fraction of
the optimal revenue. (This implies the claimed Ω(1/n) bound by taking d = (n − 1).)

It is natural to identify the basic reason(s) why, in the case of general correlated distributions,
standard and enhanced sequential posted price mechanisms fail to achieve a constant approximation
of the optimum revenue. There are two main limitations of these mechanisms: i) such mechanisms
do not solicit bids or values from all buyers, and ii) such mechanisms award items in a sequential
manner. Although it is crucial to retrieve the valuation of all (but one of the) buyers, we show, in
contrast to previously known approximation results, that it is possible to achieve a constant fraction
of the optimum revenue by a mechanism that allocates items sequentially, and moreover, in an on-line
manner. Specifically,

Definition 8. let (n, π, k) be an instance and let M be a mechanism for that instance. Mechanism M
is a blind offer mechanism iff it can be implemented as follows. Let ~b be the submitted bid vector:



1. Terminate if ~b < supp(π).
2. Either terminate or select a buyer i from the set of buyers that have not yet been selected, such

that the choice of i does not depend on ~b.
3. Propose buyer i to offer service at price pi, where pi is drawn from a probability distribution that

depends only on πi,~b−i
(hence the distribution where pi is drawn from is determined by ~b−i and in

particular it does not depend on bi).
4. Go to step 2 if there is supply left, i.e., if the number of buyers who have accepted offers does not

exceed k.

Randomization is allowed.

Remark 1. Note that the price offered to a buyer is entirely determined by the valuations of the
remaining buyers, and is independent of what is reported by buyer i himself. Also the iteration in
which a buyer is picked cannot be influenced by his bid. Nonetheless, blind offer mechanisms are
in general not incentive compatible due to the fact that a bidder may be incentivized to misreport
his bid in order to increase the probability of supply not running out before he is picked. However,
blind offer mechanisms can easily be made incentive compatible as follows: let M be a non-IC blind
offer mechanism, let ~b be a bid vector and let zi(~b) be the probability that M picks bidder i before
supply has run out. When a bidder is picked, we adapt M by skipping that bidder with a probability
pi(~b) that is chosen in a way such that zi(~b)pi(~b) = min{zi(bi~b−i) : bi ∈ supp(πi)}. This is a blind
offer mechanism in which buyer i has no incentive to lie, because now the probability that i is made
an offer is independent of his bid. Doing this iteratively for all buyers yields a dominant strategy IC
mechanism M′. Note that the act of skipping a bidder can be implemented by offering a price that
is so high that a bidder will never accept it, thus M′ is still a blind offer mechanism. Moreover, if
the probability that any bidder in M is made an offer is lower bounded by a constant c, then in M′

the probability that any bidder is offered a price is at least c. We apply this principle in the proof of
Theorem 4 below in order to obtain a dominant strategy IC mechanism with a constant factor revenue
performance2.

It is well known under the name of the taxation principle that a mechanism is dominant strategy
IC if and only if it can be implemented by an algorithm that works as follows: (i) the buyers are
simultaneously presented with a payment that does not depend on their own bid; (ii) the items are
allocated to the buyers for which the profit, i.e., the difference between the bid and the price, is
maximized. This algorithm closely resembles the description of blind offer mechanisms. However, we
would like to emphasize that there are some significant differences. First, using the taxation principle,
prices are set in advance of offering service, whereas in blind offer mechanisms prices are presented
sequentially, thus the price offered to the i-th buyer can depend on the decisions taken by the previous
buyers. Second, using the taxation principle the winners are chosen at the end, whereas in blind offer
mechanisms the winners are decided on-line, so items can be allocated to buyers without maximizing
the profit. Hence, there are dominant strategy mechanisms that cannot be implemented as blind offer
mechanisms.

Blind offer mechanisms preserve the same conceptually simple structure as standard and ESPP
mechanisms, but it bases its proposal to a buyer i on the set of all valuations other than that of i,
whereas an ESPP mechanism bases its proposal to a buyer i only on the valuations that have been
revealed by buyers in previous iterations. This increases the power of blind offer mechanisms: for
example, it is not hard to see that the classical Myerson mechanism for the independent single-item
setting belongs to the class of blind offer mechanisms. Thus blind offer mechanisms are optimal when
buyers’ valuations are independent. We will prove next that when buyer valuations are correlated,
blind offer mechanisms can always extract a constant fraction of the optimal revenue, even against

2 More precisely, for the particular (non-truthful) blind offer mechanism that we propose and analyze below, it will turn
out that applying the transformation described here does not result in any additional loss in revenue.



the ex-post IC, ex-post IR solution concept. Other mechanisms that achieve a constant approximation
to the optimal revenue have been defined by Ronen [24], and then by Chawla et al. [9] and Dobzinski
et al. [14]. However, these mechanisms, as in the taxation principle, allocate the items to profit-
maximizing buyers. Thus, they are different from blind offer mechanisms in which the allocation is
on-line.

4.1 Limitations of ESPP Mechanisms

Here we show that ESPP mechanisms cannot extract a constant fraction of the expected revenue of
the optimal dominant strategy IC, ex-post IR mechanisms. This is done by constructing a family of
instances on which no ESPP mechanism can perform well.

Theorem 3. For all n ∈ N≥2, there exists an valuation distribution π such that for all k ∈ [n] there
does not exist a ESPP mechanism for instance (n, π, k) that extracts more than a O(1/n) fraction of
the expected revenue of the optimal dominant strategy IC, ex-post IR mechanism.

Proof (sketch). Let n ∈ N and m = 2n. We specify an instance In with n buyers, and prove that
limn→0 RM(In)/OR(In) = 0, where RM(In) is the largest expected revenue achievable by any ESPP
mechanism on In, and OR(In) is the largest expected revenue achievable by a dominant strategy IC,
ex-post IR mechanism. In is defined as follows. Fix ε such that 0 < ε < 1/nm2. The valuation
distribution π is the one induced by the following process: (i) Draw a buyer i? from the set [n]
uniformly at random; (ii) Draw numbers {c j : j ∈ [n] \ {i?}} independently from [m] uniformly at
random; (iii) For all j ∈ [n] \ {i?}, set v j = c jε; (iv) Set vi? = ((

∑
j∈[n]\{i?} c j)mod m + 1)−1. ut

4.2 Revenue Guarantees for Blind Offer Mechanisms

We now prove the following theorem.

Theorem 4. For every instance (n, π, k), there is a dominant strategy IC blind offer mechanism for
which the expected revenue is at least a (2−

√
e)/4 ≈ 0.088 fraction of the maximum expected revenue

that can be extracted by an ex-post IC, ex-post IR mechanism. Moreover, if k = n, then there is a blind
offer mechanism for which the expected revenue equals the full maximum expected revenue that can
be extracted by an ex-post IC, ex-post IR mechanism.

We need to establish some intermediate results in order to build up to a proof for the above theorem.
First, we derive an upper bound on the revenue of the optimal ex-post IC, ex-post IR mechanism.
For a given instance (n, π, k), consider the linear program with variables (yi(~v))i∈[n],~v∈supp(π) where the
objective is

max
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

Prv′i∼πi,~v−i
[v′i ≥ vi]viyi(vi,~v−i)

subject to the constraints

∀i ∈ [n],~v−i ∈ supp(π−i) :
∑

vi∈supp(πi,~v−i )

yi(~v) ≤ 1, (1)

∀~v ∈ supp(π) :
∑
i∈[n]

∑
v′i∈supp(πi,~v−i ) : v′i≤vi

yi(v′i ,~v−i) ≤ k, (2)

∀i ∈ [n],~v ∈ supp(π) : yi(~v) ≥ 0. (3)

The next lemma states that the solution to this linear program forms an upper bound on the revenue
of the optimal mechanism, and it is integral in case k = n.



Lemma 1. For any instance (n, π, k), the linear program (4.2-3) upper bounds the maximum expected
revenue achievable by an ex-post IC, ex-post IR mechanism. Moreover, when k = n an optimal
solution to (4.2-3) is to set yi(vi,~v−i) to 1 for the value vi that maximizes viPrv′i∼πi,~v−i

[v′i ≥ vi] (for all
i ∈ [n],~v ∈ supp(π)).

Proof (sketch). Integrality for k = n is the easiest to prove among these two claims, so we do that first.
Note that in case k = n, we can safely remove the constraints (2) from the linear program, because
when k = n these constraints are implied by (1) and (3). The linear program that remains tells us how
to optimize a sum of convex combinations of values. That is, it effectively tells us to pick for each
i ∈ [n] and ~v−i ∈ supp(π−i) a convex combination of the values {viPrv′i∼πi,~v−i

[v′i ≥ vi]}v′i∈supp(πi,~v−i )
. The

optimal solution is therefore to put weight 1 on the maximum values in these sets, i.e., to set yi(vi,~v−i)
to 1 for the value vi that maximizes viPrv′i∼πi,~v−i

[v′i ≥ vi].
To prove the first of the two claims in the lemma, we first prove that a monotonicity constraint

holds on the set of possible allocations that a ex-post IC, ex-post IR mechanism can output. Moreover,
we show that the prices charged by the mechanism cannot exceed a certain upper bound given in
terms of allocation probabilities. Then, we formulate a linear program whose optimal value equals
the revenue of the optimal ex-post IC, ex-post IR mechanism. We finally rewrite the latter linear
program into (4.2–3). This proof uses an adaptation of the approach introduced in [17, Section 4.2].

ut

We can now proceed to prove our main result about blind offer mechanisms. We first handle the
case of unlimited supply. Consider the following blind offer mechanism.

Definition 9. Consider an instance (n, π, n). For i ∈ [n] and ~v−i ∈ supp(π−i), fix p̂i,~v−i to be any
value in the set argp max{pPrvi∼πi,~v−i

[p ≤ vi] : p ∈ R}. Define Mn
π to be be the following blind offer

mechanism for allocating service to n buyers when the valuations of these buyers are drawn from π.
Let ~b be the submitted vector of bids. For i ∈ [n], if ~b−i ∈ supp(π−i) and bi ≥ p̂i,~b−i

, then Mn
π gives

service to i and charges i the price p̂i,~b−i
. If bi < p̂i,~b−i

, then the price charged to i is 0, and i is not

given service. Otherwise, if ~b−i < supp(π−i), the price charged to i is 0 and i is not allocated service.

Lemma 2. On instance (n, π, n), mechanism Mn
π extracts the maximum revenue among the class of

ex-post IC, ex-post IR mechanisms.

Proof. Denote by pi(~v) the price charged to buyer i ∈ [n] when the buyers have valuation vector
~v ∈ supp(π). Note that Mn

π = E~v∼π
[∑

i∈[n] pi(~v)
]

=
∑

i∈[n] E~v∼π[pi(~v)] =
∑

i∈[n]
∑
~v∈supp(π) π(~v)pi(~v) =∑

i∈[n]
∑
~v−i∈supp(π−i) π−i(~v−i)Prvi∼πi,~v−i

[vi ≥ p̂i,~v−i] p̂i,~v−i Lastly, by Lemma 1 and the objective function
(4.2), we conclude that the latter expression is equal to the solution of the linear program, which is
an upper bound on the optimal revenue among all ex-post IC, ex-post IR mechanisms by Theorem
1. ut

For the case of k-limited supply where k < n, things are somewhat more complicated. Indeed,
there does not seem to exist a blind offer mechanism as simple and elegant as Mn

π. However, we define
the following blind offer mechanism.

Definition 10. Let (n, π, k) be an arbitrary instance. Let (y∗i (~v))i∈[n] be the optimal solution to the
linear program (4.2–3) above corresponding to this instance.

Let Mk
π be the blind offer mechanism that does the following: let ~v be the vector of submitted

valuations. Iterate over the set of buyers such that in iteration i, buyer i is picked. In iteration i, select
one of the following options: offer service to buyer i at a price p for which it holds that y∗i (p, ~b−i) > 0,
or skip buyer i. The probabilities with which these options are chosen are as follows: Price p is offered
with probability y∗i (p, ~b−i)/2, and buyer i is skipped with probability 1 −

∑
p′∈supp(πi,~b−i

) y
∗
i (p, ~b−i)/2.

The mechanism terminates if k buyers have accepted an offer, or at iteration n + 1.



Lemma 3. On instance (n, π, k), the expected revenue of blind offer mechanism Mk
π is at least a

(2−
√

e)/4 ≈ 0.088 fraction of the expected revenue of the optimal ex-post IC, ex-post IR mechanism.
Moreover, there exists a dominant strategy IC blind offer mechanism of which the expected revenue
is at least a (2−

√
e)/4 ≈ 0.088 fraction of the expected revenue of the optimal ex-post IC, ex-post IR

mechanism.

Proof (sketch). We will show that the expected revenue of Mk
π is at least

2 −
√

e
4

∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

Prv′i∼πi,~v−i
[v′i ≥ vi]viy

∗
i (vi,~v−i),

which, by Lemma 1 and the LP objective function (4.2), is a (2 −
√

e)/4 fraction of the expected
revenue of the optimal ex-post IC, ex-post IR mechanism.

For a vector of valuations ~v ∈ supp(π) and a buyer i ∈ [n], denote by Di,~v−i the probability
distribution from which mechanism Mk

π(~v) draws a price that is offered to buyer i, in case iteration
i ∈ [n] is reached (as described in Definition 10). We let V be a number that exceeds max{vi : i ∈
[n],~v ∈ supp(π)} and represent by V the option where Mk

π(~v) chooses to skip buyer i, so that Di,~v−i is a
probability distribution on the set {V} ∪ {vi : y∗i (vi,~v−i) > 0}. Then,

E~v∼π[revenue of Mk
π(~v)] ≥∑

i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i )
: pi≤vi

piy
∗
i (pi,~v−i)

2
Pr∀i:pi∼Di,~v−i

[|{ j ∈ [n − 1] : p j ≤ v j}| < k]. (4)

Then, by applying a Chernoff bound, we can prove that

Pr∀i:pi∼Di,~v−i
[|{ j ∈ [n − 1] : p j ≤ v j}| < k] ≥ 1 −

( e
4

)k/2
≥ 1 −

( e
4

)1/2
=

2 −
√

e
2

. (5)

The first of the two claims of Theorem 3 follows by combining (4) and (5). For the second claim,
note that (5) gives a lower bound of (2 −

√
e)/2 on the probability that all players get selected by

the mechanism. Therefore, we can combine (5) with the principle explained in Remark 1 that allows
us to transform Mk

π into a dominant strategy IC blind offer mechanism. The second claim follows by
observing that (4) still holds for the transformed mechanism. ut

Theorem 4 now follows by combining Lemmas 2 and 3. We note that the approximation factor of the
theorem is certainly not tight and can be improved with additional work. For example, it is possible to
show that for k = 1 the revenue of Mk

π is in fact at least 1/4 of the optimal revenue. Moreover, recall
that mechanism Mk

π works by scaling the probabilities yi(~v) down by 1/2. By making this scaling
factor dependent on k and choosing it appropriately, we can improve the approximation factor further.
We emphasize that the focus and purpose of the above result is merely to show that a constant factor
of the optimal revenue (independent of the supply k) is achievable.

4.3 Revenue Guarantees for ESPP Mechanisms

Finally, in this section we evaluate the revenue guarantees of the ESPP mechanisms in the presence
of a form of limited dependence that we will call d-dimensional dependence, for d ∈ N. These are
probability distributions for which it holds that the valuation distribution of a buyer conditioned on
the valuations of the rest of the buyers can be retrieved by only looking at the valuations of a certain
subset of d buyers. Formally, we have the following definition.

Definition 11. A probability distribution π on Rn is d-dimensionally dependent iff for all i ∈ [n] there
is a subset S i ⊆ [n] \ {i}, |S i| = d, such that for all ~v−i ∈ supp(π−i) it holds that πi,~vS i

= πi,~v−i .



Note that if d = 0, then π is a product of n independent probability distributions on R. On the other
hand, the set of (n − 1)-dimensionally dependent probability distributions on Rn equals the set of all
probability distributions on Rn. This notion is useful in practice for settings where it is expected that
a buyer’s valuation distribution has a reasonably close relationship with the valuation of a few other
buyers. As an example of one of these practical settings consider the case that there is a true valuation
v for the item, an expert that keeps this valuation, and remaining buyers whose valuation is influenced
by independent noise. It is then sufficient to know the valuation of a single buyer, namely the expert,
in order to retrieve the exact conditional distribution of any other buyer. We would like to stress that
in order to make this distribution 1-dimensional dependent, it is sufficient that such an expert exists,
even if auctioneer does not know which buyer is the expert. Moreover, our definition of dimensional
dependence is quite inclusive; for example, in the example above, even if each bidder picks their own
expert and adds noise to the valuation of their expert, the distribution would remain 1-dimensionally
dependent.

In general, d-dimensional dependence is relevant to many practical settings in which it is not
necessary to have complete information about the valuations of all the other buyers in order to say
something useful about the valuation of a particular buyer. This rules out the extreme kind of de-
pendence defined in the proof of Theorem 3; there the distributions are not (n − 2)-dimensionally
dependent, because for each buyer i it holds that the valuations of all buyers [n] \ {i} are necessary in
order to extract the valuation distribution of i conditioned on the others’ valuations.

It is important to realize that the class of d-dimensional dependent distributions is a strict superset
of the class of Markov random fields of degree d. A Markov random field of degree d is a popular
model to capture the notion of limited dependence, and for that model a more straightforward proce-
dure than the one in the proof below exists for obtaining the same revenue guarantee. However, the
notion of d-dimensional dependence is both more natural (for our setting) and much more general. In
fact, we show in Appendix E that there exist distributions on Rn that are 1-dimensionally dependent,
but are not a Markov random field of degree less than n/2.

Theorem 5. For every instance (n, π, k) where π is d dimensionally dependent, there exists an ESPP
mechanism of which the expected revenue is at least a (2 −

√
e)/(16d) ≥ 1/(46d) ∈ Ω(1/d) fraction

of the maximum expected revenue that can be extracted by an ex-post IC, ex-post IR mechanism.
Moreover, if k = n, then there exists an ESPP mechanism of which the expected revenue is at least a
1/(4d) fraction of the maximum expected revenue that can be extracted by an ex-post IC, ex-post IR
mechanism.

A corollary of this theorem is that the bound of Theorem 3 is asymptotically tight: For every instance
(n, π, k) there exists an ESPP mechanism of which the expected revenue is at least a Ω(1/n) fraction
of the maximum expected revenue that can be extracted by an ex-post IC, ex-post IR mechanism.3

For proving our main result on ESPP mechanisms, we make use of our insights about blind
offer mechanisms. The next lemma shows how we can convert blind offer mechanisms into ESPP
mechanisms while losing only a factor of 1/4d of the revenue, if the valuation distribution is d-
dimensionally dependent.

Lemma 4. Let α ∈ [0, 1] and let (n, π, k) be an instance where π is d-dimensionally dependent.
If there is a blind offer mechanism that extracts in expectation at least an α fraction of the expected
revenue of the optimal dominant strategy IC, ex-post IR mechanism, then there is an ESPP mechanism
that extracts in expectation at least a α/max{4d, 1} fraction of the expected revenue of the optimal
ex-post IC, ex-post IR mechanism.

Proof. Let M be a blind offer mechanism that extracts in expectation at least an α fraction of the
expected revenue of the optimal dominant-strategy IC, ex-post IR mechanism. Let pM

i (~v) be the ex-
pected price paid to mechanism M by buyer i ∈ [n] when ~v are the reported valuations. Let q ∈ [0, 1]

3 This Ω(1/n) bound can be also be achieved in a simple way through an analysis similar to the one given in [24].



and consider the following enhanced sequential posted price mechanism Mq: the mechanism Mq first
partitions [n] into two sets A and B = [n] \ A. It does so by placing each buyer independently with
probability q in set A, and placing him in set B otherwise. Then, the mechanism retrieves the vector
~vA by asking the buyers in A for their valuations. The existence of M implies the existence of a blind
offer mechanism MB that only makes offers to buyers in B such that the expected price pMB

i (~v) paid
to MB by a buyer in B is at least pM

i (~v) (this can be achieved by doing the same as M, but refraining
from offering to buyers in A). Mechanism Mq offers each buyer i ∈ B a price that is determined by
simulating MB as follows: make the same decisions as MB would, except for that an offer of MB is
skipped if πi,~v−i , πi,~vA .

Let P be the distribution (induced by mechanism Mq) on the set of partitions of [n] into 2 sets.
For i ∈ [n], let S i ⊆ [n] \ {i} be the set of d buyers such that πi,~vS i

= πi,~v−i for all ~v ∈ Rn. For T ⊆ [n],
let pi(T,~v) be the expected price paid to Mq by a buyer i ∈ T , conditioned on the event that B = T
and S i ⊆ A. Note that pi(T,~v) ≥ pMB

i (~v) ≥ pM
i (~v). Therefore, the expected revenue of Mq is∑

~v∈supp(π)

π(~v)
∑
i∈[n]

Pr{A,B}∼P[i ∈ B ∩ S i ⊆ A]pi(B,~v) =
∑

~v∈supp(π)

π(~v)
∑
i∈[n]

(1 − q)qd pi(B,~v)

≥ (1 − q)qd
∑

~v∈supp(π)

π(~v)
∑
i∈[n]

pM
i (~v)

The last (double) summation is at least α times the expected revenue of the optimal dominant strategy
IC, ex post IR mechanism, by definition of M. Therefore, this mechanism extracts at least a (1−q)qdα

fraction of the optimal revenue. For d = 0 it is optimal to set q = 0, which results in an enhanced
sequential posted price mechanism whose revenue is α-approximately optimal. For d = 1 it is optimal
to set q = 1/2, which results in a (α/4)-approximately optimal enhanced sequential posted price
mechanism. For d ≥ 2 setting q = 1 − 1/d will achieve the desired approximation ratio, since
limd→∞(1 − 1/d)d = 1/e. Moreover, (1 − 1/d)d is increasing in d, and equals 1/4 for d = 2. ut

We note that in the above proof it is easy to see that we can decrease the fraction q of buyers being
probed for their valuation at the cost of worsening the approximation guarantee.

Theorem 5 directly follows by combining the above lemma with Theorem 4.

5 Open Problems

Besides improving approximation bounds established in the present paper, there are many other in-
teresting further research directions. For example, it would be interesting to investigate revenue guar-
antees under the additional constraint that the sequential posted price mechanism be on-line, i.e., the
mechanism has no control over which buyers to pick, and should perform well for any possible or-
dering of the buyers. We are also interested in the role of randomization in our ESPP mechanism that
extracts O(1/d) of the optimal revenue: in the current proof it is necessary to pick buyers uniformly at
random. Does there exist a deterministic ESPP mechanism that attains the same revenue guarantee,
or is randomness a necessity?

An obvious and interesting research direction is to investigate more general auction problems. In
particular, to what extent can ESPP mechanisms be applied to auctions having non-identical items?
Additionally, can such mechanisms be applied to more complex allocation constraints or specific
valuation functions for the buyers? The agents may have, for example, a demand of more than one
item, or there may be a matroid feasibility constraint on the set of buyers or on the set of items that
may be allocated.
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APPENDIX

A Continuous distribution properties

Let π be a valuation distribution on [0, ai]n, with ai ∈ R≥0 for i ∈ [n], with density f that is continuous
and nowhere zero. Distribution π is said to satisfy affiliation iff for every two valuation vectors ~v, ~w ∈
supp(π) it holds that f (~v ∧ ~w) f (~v ∨ ~w) ≥ f (~v) f (~w), where ~v ∧ ~w is the component-wise minimum and
~v ∨ ~w is the component-wise maximum. For i ∈ [n] and ~v−i ∈ supp(π−i) the conditional marginal
density function fi(·|~v−i) is defined as

fi(vi | ~v−i) =
f (vi,~v−i)∫ a

0 f (t,~v−i)dt
,

the conditional revenue curve Bi(· | ~v−i) is defined as

Bi(vi | ~v−i) = vi

∫ a

vi

fi(t | ~v−i)dt,

and the conditional virtual value φi(· | ~v−i) is defined as

φi(vi | ~v−i) = −

d
dvi

Bi(vi | ~v−i)

fi(vi | ~v−i)
.

Denote by Fi(· | ~v−i) the cumulative distribution function corresponding to fi(· | ~v−i). Distribution π
satisfies regularity if φi(· | ~v−i) is non-decreasing for all i ∈ [n] and ~v−i ∈ supp(π−i) and it satisfies the
monotone hazard rate condition if 1−Fi(vi |~v−i)

fi(vi |~v−i)
is non-increasing in vi for all i ∈ [n] and ~v−i ∈ supp(π−i).

A discussion and justification for the above notions is outside of the scope of this paper, and we
refer the interested reader to [25].

Note that Roughgarden and Talgam-Cohen [25] proved that for any distribution π that satisfies
regularity and affiliation the Myerson mechanism is ex-post IC, ex-post IR and optimal among all
ex-post IC and ex-post IR mechanisms.

B Proof of Theorem 2 (Extension of Theorem 1 to the continuous case)

Proof. Consider c > 1 and m ≥ (c− log c)/2 and set M = 1 + 1/m. Let V be a random variable whose
value is drawn over the support [1/m, 1] according to the probability density function

fV (x) =
1

(m − 1)x2 .

Let N1 and N2 be two random variables whose values are independently drawn over the support
[0,M − v] according to the conditional density function

fN|V (z | V = v) =
c−z ln(c)

Z(v)

with c > 1 and Z(v) = 1 − c−(M−v). Finally, let f be the probability density function of the pair
(X,Y) = (V + N1 − 1/m,V + N2 − 1/m).

Properties 1, 2 and 3 are trivial and can be immediately checked.
For v ∈ [0, 1], let fX|V (·|V = v) and fY |V (·|V = v) be respectively the probability density functions

of X and Y conditioned on the event that V = v. In order to establish the remaining properties,
observe that fX|V (x | V = v) = fN|V (x− v+ 1/m | V = v) if x + 1/m ≥ v and 0 otherwise. Equivalently,



fY |V (y | V = v) = fN|V (y − v + 1/m | V = v) if y + 1/m ≥ v and 0 otherwise. Consider now the triple
(X,Y,V). The joint density function of this triple is

fX,Y,V (x, y, v) = fX|Y,V (x | Y = y,V = v) · fY |V (y | V = v) · fV (v).

Note that fX|Y,V (x | Y = y,V = v) = fX|V (x | V = v) if min{x, y} + 1/m ≥ v and 0 otherwise. Then

fX,Y,V (x, y, v) = fN |V (x − v + 1/m | V = v) · fN |V (y − v + 1/m | V = v) · fV (v).

if min{x, y} + 1/m ≥ v and 0 otherwise. Hence, we can compute f as follows:

f (x, y) =

∫ 1

1/m
fX,Y,V (x, y, v)dv =

ln2(c)
m − 1

· c−(x+y) ·

∫ α+1/m

1/m

c2v

v2Z(v)2 dv,

where α = min {1 − 1/m, x, y}. Note that the integrated function is continuous and positive in the
interval in which it is integrated. Hence, the integral turns out to be non-zero. From this, we observe
that f (x, y) is continuous and nowhere zero on [0, 1]2, satisfying Property 4.

Let us now derive the conditional probability density functions. By symmetry it will be sufficient
to focus only on fX|Y .

fX|Y (x | Y = y) =

∫ 1

1/m
fX|Y,V (x | Y = y,V = v) · fV (v)dv =

ln(c) · c−x

m − 1
·

∫ α+1/m

1/m

cv

v2Z(v)
dv

=
m2cM ln(c)

m − 1
· c−x ·

∫ α

0

1
(mz + 1)2(c1−z − 1)

dz.

It is now obvious that the conditional probability density functions are continuous and nowhere zero,
as desired by Property 5.

Let γ(z) = 1/((mz + 1)2(c1−z − 1)), g(a) =
∫ a

0 γ(z)dz with a ∈ [0, 1] and let α′ = min{y, 1 − 1/m}.
Then

fX|Y (x | Y = y) =
m2cM ln(c)

m − 1
· c−x ·

g(x), if x < α′;
g(α′), otherwise.

Moreover, we have that

1 − FX|Y (x | Y = y) =

∫ 1

x
fX|Y (z | Y = y)dz

=
m2cM ln(c)

m − 1
·


∫ α′

x c−zg(z)dz + g(α′)
∫ 1
α′

c−zdz, if x < α′;

g(α′)
∫ 1

x c−zdz =
g(α′)(c−x−c−1)

ln(c) , otherwise.

Hence, the inverse hazard rate is

I(x) =
1 − FX|Y (x | Y = y)

fX|Y (x | Y = y)
=


∫ α′

x c−zg(z)dz+g(α′)
∫ 1
α′

c−zdz
c−xg(x) , if x < α′;

1−cx−1

ln(c) , otherwise.

We prove that I(x) is non-increasing in x in the interval [0, 1] and thus f has the monotone hazard
rate and is, as a consequence, regular, as required by Property 6.

Clearly, I(x) is non-increasing in x in the interval [α′, 1] since in this case I(x) = (1− cx−1)/ ln(c).
Moreover, I(x) does not have discontinuities for x = α′. So, it is sufficient to show that I(x) in non-
increasing also in the interval [0, α′]. To this aim, observe that for x < α′,

dI(x)
dx

=
d
dx

∫ α′

x c−zg(z)dz + g(α′)
∫ 1
α′

c−zdz

c−xg(x)



=

c−xg(x)
d
dx

∫ α′

x
c−zg(z)dz −

∫ α′

x
c−zg(z)dz

d
dx

c−xg(x)

+c−xg(x)g(α′)
d
dx

∫ 1

α′
c−zdz − g(α′)

∫ 1

α′
c−zdz

d
dx

c−xg(x)
)
/(c−xg(x))2.

Observe that, according to the second fundamental theorem of calculus,

d
dx

∫ α′

x
c−zg(z)dz = −c−xg(x),

whereas
d
dx

c−xg(x) = c−xγ(x) − c−xg(x) ln(c),

and d
dx

∫ 1
α′

c−zdz = 0. Then,

dI(x)
dx

= −1 +

(
ln(c) −

γ(x)
g(x)

) ∫ α′

x c−zg(z)dz + g(α′)
∫ 1
α′

c−zdz

c−xg(x)
= −1 +

(
ln(c) −

γ(x)
g(x)

)
I(x).

The result then follows by showing that γ(x)/g(x) ≥ ln(c).
To this aim, let us consider the function γ′(z) = cz(c1−z − 1)(mz + 1)2 for z ∈ [0, x]. Note that

dγ′(z)
dz

= 2mc(mz + 1)
(
1 −

2m + mz log c + log c
c1−z

)
≤ 2mc(mz + 1)

(
1 −

2m + log c
c

)
≤ 0,

where we used the fact that m ≥ (c − log c)/2. Thus, γ′(z) is non-increasing in its argument and, in
particular,

γ′(z) ≥ γ′(x) ≥ (cx − 1)(c1−x − 1)(mx + 1)2.

By simple algebraic manipulation, it then follows that γ(z) ≤ γ(x)cz/(cx − 1). Then

γ(x)
g(x)

=
γ(x)∫ x

0 γ(z)dz
≥

γ(x)∫ x
0

cz

cx−1γ(x)dz
=

cx − 1∫ x
0 czdz

= ln(c),

as desired.
Set now C = ln2(c)/(m − 1) and let h(a) =

∫ min{1−1/m,a}+1/m
1/m

c2v

v2Z(v)2 dv with a ∈ [0, 1]. Note that
integrated function is positive for any v ∈ [1/m, 1]. Hence, the integral increases as the size of the
interval in which it is defined increases. In other word, the function h(a) is non-decreasing in a.

Consider now the two pairs (x, y) and (x′, y′). Moreover, let x̂ = max{x, x′} and x̌ = min{x, x′}
and, similarly, define ŷ and y̌. We show that f (x, y) f (x′, y′) ≤ f (x̂, ŷ) f (x̌, y̌), satisfying in this way
also Property 7.

Indeed,
f (x, y) f (x′, y′) = C2c−(x+y+x′+y′)h(min{x, y})h(min{x′, y′}).

If x ≥ x′ and y ≥ y′ (x < x′ and y < y′, respectively), then (x̂, ŷ) = (x, y) ((x′, y′), resp.) and (x̌, y̌) =

(x′, y′) ((x, y), resp.), and the desired result immediately follows. Suppose instead that (x̂, ŷ) = (x, y′)
and (x̌, y̌) = (x′, y). Then

f (x̂, ŷ) f (x̌, y̌) = C2c−(x+y+x′+y′)h(min{x, y′})h(min{x′, y}).

We will prove that in this case h(min{x, y})h(min{x′, y′}) ≤ h(min{x, y′})h(min{x′, y}). First observe
that on both sides one of the two factors must be h(min{x, y, x′, y′}) = h(min{x′, y}). Suppose without
loss of generality, that min{x′, y} = y. Then it is sufficient to prove that h(min{x′, y′}) ≤ h(min{x, y′}),
or, since h in non-decreasing, that min{x′, y′} ≤ min{x, y′}. If x ≤ y′, then x′ ≤ x ≤ y′ by hypothesis



and the claim follows. If y′ < x, then it immediately follows that min{x′, y′} ≤ y′. The case that
(x̂, ŷ) = (x′, y) and (x̌, y̌) = (x, y′) is similar and hence omitted.

Finally, observe that limc→∞ fN|V (0 | V = v) = 1 and limc→∞ fN|V (z | V = v) = 0 for any z > 0.
Hence, limc→∞ X = limc→∞ Y = V − 1/m.

Let us consider the case that the service can be offered to only one buyer. In this setting, the
following is a dominant strategy IC and ex-post IR mechanism: it offers to buyer 1 the service at
a price of the valuation of buyer 2 minus a fixed constant ε. For small enough c, ε can be chosen
arbitrarily small. Thus, for any ε there exists a choice of c such that in expectation this mechanism
extracts as revenue all but ε of the social welfare. The expected optimal social welfare (and thus the
optimal expected revenue) is:

OR = OS W = Ev∼ fV [v − 1/m] =

∫ 1

1/m

v − 1/m
(m − 1)v2 dv =

ln(m)
m − 1

−
1
m
≥

ln(m − 1)
m − 1

.

A posted price mechanism will offer buyer 1 a price p1 ≥ 0, which the buyer subsequently accepts
iff X ≥ p1. After that, if buyer 1 rejects, the mechanism offers a price p2 to buyer 2. Thus, if p1 ∈

[0, 1 − 1/m], then

p1Prv∼ fV [X ≥ p1] = p1Prv∼ fV [v ≥ p1 + 1/m]

= p1

∫ 1

p1+1/m

1
(m − 1)v2 dv

=
p1

m − 1

(
1

p1 + 1/m
− 1

)
≤

1 − p1

m − 1
≤

1
m − 1

.

Moreover, if p1 ≥ 1 − 1/m, then p1Prv∼ f [X ≥ p1] = 0. Hence,

RM = p1Prv∼ f [v ≥ p1] + p2Prv∼ f [v < p1 ∩ v ≥ p2] ≤
1

m − 1
+ p2Prv∼ f [v ≥ p2] ≤

2
m − 1

.

Therefore:
lim

m→∞

RM
OR

= lim
m→∞

RM
OS W

≤ lim
m→∞

2
ln(m − 1)

= 0.

The case in which it can be offered to both buyer is similar and omitted. ut

We note that the above result can be easily extended to a any number of buyers, by adding dummy
buyers whose valuation is independently drawn over the support [0, 1] according to the probability
density function

f (x) =
c−x ln c
1 − c−1 .

Note that, with this extension, the resulting distribution π does not satisfy the symmetry condition
anymore. In the result of Roughgarden and Talgam-Cohen [25], symmetry is not necessary for the
optimality of the Myerson mechanism to hold.

C A Revenue Guarantee for Sequential Posted Price Mechanisms

In Section 3.1 we have demonstrated that it is impossible to have a sequential posted price mechanism
extract a constant fraction of the optimal revenue. More precisely, in our example instances it was the
case that the expected revenue extracted by every posted price mechanism is a Θ(1/ log(r)) fraction
of the optimal expected revenue, where r is the ratio between the highest valuation and the lowest
valuation in the support of the valuation distribution. A natural question that arises is whether this
is the worst possible instance in terms of revenue extracted, as a function of r. We show here that
this is indeed the case, asymptotically: For every valuation distribution π, there exists a mechanism



that extracts in expectation at least a Θ(1/ log(r)) fraction of the revenue of the optimal revenue. We
note that in many realistic scenarios, we do not expect the extremal valuations of the buyers to lie too
far from each other, because often the valuation of a buyer is strongly impacted by prior objective
knowledge of the value of the service to be auctioned. The results of this section are valuable when
that is the case.

We start with the unit supply case.

Definition 12. For a valuation distribution π on Rn, let vmax
π and vmin

π be max{vi : v ∈ supp(π), i ∈ [n]}
and min{max{vi : i ∈ [n]} : v ∈ supp(π)} respectively. Let rπ = vmax

π /vmin
π be the ratio between the

highest and lowest coordinate-wise maximum valuation in the support of π.

Proposition 3. Let n ∈ N≥1, and let π be a probability distribution on Rn. For the unit supply case
there exists a sequential posted price mechanism that, when run on instance (n, π, 1), extracts in
expectation at least an Ω(1/ log(rπ)) fraction of the expected revenue of the expected optimal social
welfare (and therefore also of the expected revenue of the optimal dominant strategy IC and ex-post
IR auction).

Proof. The proof uses a standard bucketing trick (see, e.g., [3]). Specifically, let M be the sequential
posted price mechanism that draws a value p uniformly at random from the set S = {vmin

π 2k : k ∈
[dlog(rπ) − 1e] ∪ {0}}. M offers price p to all the bidders in an arbitrary order, until a bidder accepts.

Let πmax be the probability distribution of the coordinate-wise maximum of π. Note that |S | does
not exceed log(rmax

π ). Therefore the probability that p is the highest possible value (among the values
in S ) that does not exceed the value drawn from πmax, is equal to 1/ log(rπ). More formally, let πS be
the probability distribution from which p is drawn; then

Prvmax∼πmax,p∼πS [p ≤ vmax ∩ (@p′ ∈ S : p′ > p ∧ p′ ≤ vmax)] ≤
1

log(rπ)
.

Thus, with probability 1/ log(rπ), the mechanism generates a revenue of exactly vmin
π 2k, where k is

the number such that the value drawn from πmax lies in between vmin
π 2k and vmin

π 2k+1. This implies that
with probability 1/ log(rπ) the mechanism generates a revenue that lies a factor of at most 1/2 away
from the optimal social welfare OPT (~v) (i.e., the coordinate-wise maximum valuation):

E~v∼π[revenue of M(~v)] ≥
1

log(rπ)
1
2

E~v∼π[OPT (~v)] ≥
1

2 log(rπ)
E~v∼π[OPT (~v)]. ut

This result can be generalized to yield revenue bounds for the case of k-limited supply, where k > 1.

Definition 13. For a valuation distribution π on Rn, let vmax(k)
π and vmin(k)

π be respectively the max-
imum kth largest and minimum kth smallest valuation among the valuation vectors in supp(π). Let
r(k)
π = vmax(k)

π /vmin(k)
π be the ratio between these values.

Theorem 6. Let n ∈ N≥1, and let π be a probability distribution on Rn. For any k ∈ [n], there exists
a sequential posted price mechanism that, when run on instance (n, π, k), extracts in expectation at

least anΩ
(

1
log(r(k)

π )
·
vmax(k)
π

vmax(1)
π

)
fraction of the expected revenue of the expected optimal social welfare (and

therefore also of the expected revenue of the optimal dominant strategy IC, ex-post IR mechanism).

Proof. Let M be the sequential posted price mechanism that draws a value p uniformly at random
from the set S = {vmin(k)

π 2 j : j ∈ [dlog(r(k)
π )−1e]∪{0}}. M offers price p to all the buyers in an arbitrary

order, until k buyers accept.
Let πmax(k) be the probability distribution of the k-th highest value of π. Note that |S | does not

exceed log(r(k)
π ). Therefore the probability that p is the highest possible value (among the values in



S ) that does not exceed the value drawn from πmax(k), is equal to 1/ log(r(k)
π ). More formally, let πS

be the probability distribution from which p is drawn; then

Prvmax(k)∼πmax(k),p∼πS
[p ≤ vmax(k) ∩ (@p′ ∈ S : p′ > p ∧ p′ ≤ vmax(k))] ≤

1

log(r(k)
π )

.

Thus, with probability 1/ log(r(k)
π ), the mechanism extracts from each winner a revenue of exactly

vmin(k)
π 2 j, where j is the number such that the value drawn from πmax(k) lies in between vmin(k)

π 2 j

and vmin(k)
π 2 j+1. This implies that with probability 1/ log(r(k)

π ) the mechanism extracts from buyer i a

revenue that lies a factor of O
(
vmax(k)
π

vmax(1)
π

)
away from vmax(1)

π . This leads to the conclusion that

E~v∼π[revenue of M(~v)] ≥ Ω
 1

log(r(k)
π )
·
vmax(k)
π

vmax(1)
π

 ∑
i∈WM

vmax(1)
π ,

where WM denotes the set of buyers for which the mechanism M allocates the service. The theorem
then follows since

∑
i∈WM v

max(1)
π =

∑
i∈WOPT v

max(1)
π ≥ OPT =

∑
i∈WOPT vi, where WOPT denotes the

set of buyers at which the optimal mechanism allocates the service, and OPT is the social welfare
achieved by the optimal mechanism. ut

The above result does not always guarantee a good revenue; for example in the extreme case
where vmin

π = 0. However, it is straightforward to generalize the above theorem such that it becomes
useful for a much bigger family of probability distributions: let v̂ and v̌ be two any two values in the
support of πmax, and let c(v̂, v̌) = Prvmax∼πmax[v̌ ≤ vmax ≤ v̂]. Then by replacing the values vmax

π and
vmin
π in the above proof by respectively v̂ and v̌, we obtain a sequential posted price mechanism that

extracts in expectation a c(v̂, v̌)/(2 log(v̂/v̌)) fraction of the optimal social welfare. By choosing v̂ and
v̌ such that this ratio is maximized, we obtain a mechanism that extracts a significant fraction of the
optimal social welfare in any setting where the valuation distribution of a buyer is concentrated in a
relatively not too large interval.

A better result can be given for the unlimited supply case.

Definition 14. For a valuation distribution π on Rn and any i ∈ [n], let vmax
π,i and vmin

π,i be max{vi : ~v ∈
supp(π)} and min{vi : ~v ∈ supp(π)} respectively. Let rπ,i = vmax

π,i /v
min
π,i , be the ratio between the highest

and lowest valuation of buyer i in the support of π.

Proposition 4. Let n ∈ N≥1, and let π be a probability distribution on Rn. There exists a sequen-
tial posted price mechanism that, when run on instance (n, π, n), extracts in expectation at least an
Ω(1/ log(max{rπ,i : i ∈ [n]})) fraction of the expected revenue of the expected optimal social wel-
fare (and therefore also the expected revenue of the optimal dominant strategy IC and ex-post IR
mechanism).

Proof. Let M be the sequential posted price mechanism that draws for each i ∈ [n] a value pi uni-
formly at random from the set S i = {vmin

π,i 2k : k ∈ [dlog(rπ,i) − 1e] ∪ {0}}. M proposes prices to the
buyers in an arbitrary order, and offers price pi to buyer i.

For i ∈ [n], let πi be the probability distribution of the ith coordinate of π. Note that |S i| does not
exceed log(rπ,i). Therefore the probability that pi is the highest possible value (among the values in
S i) that does not exceed the value drawn from πi, is at least 1/ log(rπ,i). More formally, let πS i be the
uniform distribution on S ; then

Prvi∼πi,pi∼πS i
[pi ≤ vi ∩ (@p′i ∈ S i : p′i > pi ∧ p′i ≤ vi)] ≤

1
log(rπ,i)

.

Thus, with probability 1/ log(rπ,i), the mechanism extracts from buyer i a revenue of exactly vi,min2k,
where k is the number such that the value drawn from πi lies in between vi,min2i and vi,min2i+1. This



implies that with probability 1/ log(rπ,i) the mechanism extracts from buyer i a revenue that lies a
factor of at most 1/2 away from vi. This leads to the conclusion that

E~v∼π[revenue of M(~v)] ≥
∑
i∈[n]

1
log(rπ,i)

1
2

Evi∼πi[vi]

≥
1

2 log(max{rπ,i : i ∈ [n]})

∑
i∈[n]

Evi∼πi[vi]

=
1

2 log(max{rπ,i : i ∈ [n]})
E~v∼π[OPT (~v)],

where OPT (~v) =
∑

i∈[n] vi denotes the optimal social welfare when the buyers have valuation vector
~v. ut

The techniques used for proving these results can be applied to improve the approximation guar-
antees for the more general k-limited supply setting, for any k ∈ [n], under special conditions, as
follows. We say that an instance (n, π, k) is k-well-separated if for any~v ∈ supp(π) the k-th coordinate-
wise maximum vmax(k)

π is achieved only by a single buyer, i.e., the set {i : vi = vmax(k)
π ,~v ∈ supp(π)} is

a singleton. Then we can prove the following proposition.

Proposition 5. Let n ∈ N≥1, and let π be a discrete probability distribution on Rn. For any k ∈ [n],
if the instance (n, π, k) is k-well-separated, then there exists a sequential posted price mechanism

that, when run on instance (n, π, k), extracts in expectation at least an Ω
(

1
log(r(k)

π )
·maxi∈[n] log vmax(k)

π

vmax
π,i

)
fraction of the expected optimal social welfare (and therefore also of the expected revenue of the
optimal dominant strategy IC and ex-post IR mechanism).

Proof. Since π is discrete, let δ be the smallest ratio larger than 1 between two valuation in ~v ∈
supp(π), i.e., δ = mini, j{vi/v j > 1: ~v ∈ supp(π)}. Consider ε ≤ δ and let M be the sequential
posted price mechanism that draws a value p uniformly at random from the set S = {vmin(k)

π ε j : j ∈
[dlogε(r

(k)
π ) − 1e] ∪ {0}}. Moreover, M draws for each i ∈ [n] a value pi uniformly at random from

the set S i = {vmin
π,i ε

` : ` ∈ [blogε
p
vmin
π,i
c, dlogε

p
vmin
π,i
− 1e]}. M proposes prices to the buyers in an arbitrary

order, and offers price pi to buyer i.
Let πmax(k) be the probability distribution of the k-th coordinate-wise maximum of π. Note that

|S | does not exceed logε(r
(k)
π ). Therefore the probability that p is the highest possible value (among

the values in S ) that does not exceed the value drawn from πmax(k), is equal to 1/ logε(r
(k)
π ). More

formally, let πS be the probability distribution from which p is drawn; then

Prvmax(k)∼πmax(k),p∼πS
[p ≤ vmax(k) ∩ (@p′ ∈ S : p′ > p ∧ p′ ≤ vmax(k))] ≤

1

logε(r
(k)
π )

.

Thus, with probability 1/ logε(r
(k)
π ), the mechanism selects p = vmin(k)

π ε j, where j is the number such
that the value drawn from πmax(k) lies in between vmin(k)

π ε j and vmin(k)
π ε j+1. When this event occurs,

since the instance is k-well separated and by our choice of ε, the set WM of buyers whose valuation
is at least p has size exactly k and corresponds of the set WOPT of buyers with the k highest valuation
in ~v ∈ supp(π). Hence, with probability 1/ logε(r

(k)
π ) the mechanism M extracts revenue only from

buyers in WOPT .
Now, for any i ∈ WOPT , let πi be the probability distribution of the i-th coordinate of π. Note that

|S i| does not exceed logε
vmax
π,i

vmax(k)
π

. Therefore the probability that pi is the highest possible value (among

the values in S i) that does not exceed the value drawn from πi, is at least logε
vmax(k)
π

vmax
π,i

. More formally,
let πS i be the uniform distribution on S ; then

Prvi∼πi,pi∼πS i
[pi ≤ vi ∩ (@p′i ∈ S i : p′i > pi ∧ p′i ≤ vi)] ≤ logε

vmax(k)
π

vmax
π,i

.



Thus, with probability 1
logε (r

(k)
π )
· logε

vmax(k)
π

vmax
π,i

, the mechanism extracts from buyer i ∈ WOPT a revenue of

exactly vi,min2`, where ` is the number such that the value drawn from πi lies in between vi,min2` and

vi,min2`+1. This implies that with probability 1
logε (r

(k)
π )
· logε

vmax(k)
π

vmax
π,i

the mechanism extracts from buyer

i ∈ WOPT a revenue that lies a factor of at most 1/2 away from vi. This leads to the conclusion that

E~v∼π[revenue of M(~v)] ≥
∑

i∈WOPT

1

logε(r
(k)
π )
· logε

vmax(k)
π

vmax
π,i

1
2

Evi∼πi[vi]

= Ω

 1

log(r(k)
π )
·max

i∈[n]
log

vmax(k)
π

vmax
π,i

 ∑
i∈[n]

Evi∼πi[vi]

= Ω

 1

log(r(k)
π )
·max

i∈[n]
log

vmax(k)
π

vmax
π,i

 E~v∼π[OPT (~v)],

where OPT (~v) =
∑

i∈WOPT vi denotes the optimal social welfare when the buyers have valuation vector
v. ut

Clearly, the stated bound of O(1/ log(max{rπ,i : i ∈ [n]})) is very crude. For most practical settings
we expect that it is possible to do a much sharper revenue analysis of the mechanisms in the proofs
of the above propositions, by taking the particular valuation distribution into account. Moreover,
as suggested above, also for the unlimited supply case it is possible to tweak the mechanism in
a straightforward way in order to achieve a good revenue in cases where the ratios rπ,i are very
large. Finally, note that the mechanisms in the proofs of these two propositions do not take into
account any dependence and correlation among the valuations of the buyers. When provided with
a particular valuation distribution, a better revenue and sharper analysis may be obtained by taking
such dependence into account, and adapting the mechanisms accordingly.

D Addressing some practical problems of enhanced sequential posted price
mechanisms

The first problematic aspect is that while there is no incentive for a buyer to lie, there is also no
incentive to tell the truth. Therefore, incentive compatibility is only achieved in weakly dominant
strategies. We note that in the literature many (or perhaps most) truthful mechanisms are only incen-
tive compatible in the weak sense. Such mechanisms are of theoretical interest, and may possibly be
turned into more practically satisfactory mechanisms.

In the case of ESPP mechanisms, the lack of a strong incentive to be truthful only applies to those
buyers who are asked for their values, knowing they will not be allocated the item. Such a buyer may
not cooperate at all, or in stating their value may not be truthful. The first problem can be resolved
by compensating the buyer with some fixed small amount of money that the auctioneer obtains from
the buyers who pay for the service. Having insured some level of cooperation, how do we incentivize
these buyers to be truthful?

Here is an example of such an adaptation of our enhanced SPP mechanisms that creates the
proper strong incentive. Suppose now that we have provided an incentive for every buyer to reveal a
valuation. Here is an example of such an adaptation of our enhanced SPP mechanisms that creates the
proper strong incentive. At the start of the auction, using a cryptographic protocol (or just a normal
sealed envelope), we ask each of the buyers for a sealed commitment of their value. Furthermore, for
buyers being offered a price, with some (say small) probability, the buyer must reveal their private
valuation in order to be allowed the item. Now this is strongly incentive compatible if we assume
that buyers are risk averse so that they will not over-bid their valuation. There is clearly no monetary
reason for a buyer to under-bid.



E On d-dimensional dependence versus Markov random fields of degree d

This section is intended for readers who are interested in the relative generality of d-dimensionally
dependence compared to Markov random fields of degree d. We assume that reader is familiar with
the definition of Markov random fields. For convenience we will state a weaker notion here.

Definition 15. Given a undirected graph G = ([n], E), a probability distribution π on Rn is a local
Markov random field with respect to G if the following property, named local Markov property, holds:
for all i ∈ [n], πi is independent of π[n]\({i}∪Γ(i)) when conditioning on all coordinates in Γ(i). Here,
Γ(i) denotes the neighborhood of i in G.

(In a true Markov random field, two additional technical conditions, needs to be satisfied, called
the pairwise Markov property and the global Markov property.) We will give an example of a 1-
dimensionally dependent distribution that is not a local Markov random field with respect to any
graph G in which all vertices have a degree less than (n − 2)/2.

Consider a distribution π on {0, 1}n+2. A vector v drawn from π is formed according to the fol-
lowing random process: for all i ∈ [n] we are given 2n distinct probability distributions on {0, 1}. We
name these distributions πi,0 and πi,1, for i ∈ [n]. These distributions are such that both 0 and 1 occur
with positive probability. Let v′ be a value drawn from yet another distribution π′ on {0, 1}where again
both 0 and 1 have positive probability. The final generated vector is then (v1,v′ , v2,v′ , . . . , vn,v′ , v′, v′),
where vi,v′ is drawn from πi,v′ .

π is clearly 1-dimensionally dependent, since for i ∈ [n] the conditional marginal distribution
πi,~v−i is determined by only the value v′, which is the value of the (n + 1)-th coordinate. Also, the
value of the (n + 1)-th coordinate is entirely determined by the (n + 2)-th coordinate, and vice versa.

We can also easily see that π is not a Markov random field with respect to any graph in which all
vertices have a degree less than n/2. Let G be a graph such that π is a Markov random field. Suppose
for contradiction that there exists an i ∈ [n] for which it holds that Γ(i) ⊆ [n]. Then the local Markov
property would be violated. Therefore, each vertex in [n] is connected to either vertex n + 1 or n + 2.
Hence, we conclude that either vertex n + 1 or n + 2 has at least n/2 vertices attached to it.

F Missing proofs

F.1 Proof of Theorem 1

Proof. We first consider the unit supply setting, i.e., instances of the form (n, π, 1). As a first step,
we show that it is impossible to achieve a constant factor approximation when we compare a posted
price mechanism to the expected expected optimal social welfare, defined as:

OS W = E~v∼π[max{vi : i ∈ [n]}].

Let OR be the optimal revenue that a dominant strategy IC and ex-post IR mechanism can achieve.
(Of course OR depends on the valuation distribution π, but we assume that the valuation distribution
is given, and implicit from context.) It is clear that OS W is an upper bound to OR regardless of π,
since a dominant strategy IC and ex-post IR mechanism will not charge (in expectation) any buyer a
higher price than its expected valuation.

Fix m ∈ N≥1 arbitrarily, and consider the case where n = 1 and the valuation v1 of the single
buyer is taken from {1/a : a ∈ [m]} distributed such that π1(1/a) = 1/m for all a ∈ [m]. In this setting,
a posted price mechanism will offer the buyer a price p, which the buyer subsequently accepts iff
v1 ≥ p. After that, the mechanism terminates.

Note that OS W = 1
m

∑m
a=1

1
a . The expected revenue of the mechanism is

RM = pPrv1∼π1[v1 ≥ p] = p
|{a : 1/a ≥ p}|

m
=
|{a : 1/a ≥ 1/p−1}|

mp−1 =
p−1

mp−1 =
1
m
. (6)



Therefore:
lim

m→∞

RM
OS W

= lim
m→∞

1∑
a∈[m] 1/a

=
1

H(m)
= 0.

So, no posted price mechanism can secure in expectation a revenue that lies a constant factor away
from the expected optimal social welfare. (Because our analysis is for an instance instance with only
one buyer, this inapproximability result also holds for instances with independent valuations.)

We extend the above example in a simple way to a setting where the expected revenue of the
optimal dominant strategy IC, ex-post IR mechanism is equal to the expected optimal social welfare.

Fix m ∈ N≥1 and consider a setting with 2 buyers, where the type vector (v1, v2) takes values
in {(1/a, 1/a) : a ∈ [m]} according to the probability distribution where π((1/a, 1/a)) = 1/m for all
a ∈ [m]. A mechanism that always gives buyer 1 the service, and charges buyer 1 the bid of buyer 2, is
clearly dominant strategy IC and also clearly achieves a revenue equal to the optimal social welfare.

In this two buyer setting, the value OS W is again OS W = 1
m

∑m
a=1

1
a . By symmetry, we may

assume without loss of generality that a posted price mechanism works by first proposing a price p1
to buyer 1, and then proposing a price p2 to buyer 2 if buyer 1 rejected the offer. Using arguments
similar to (6), we derive that the revenue of this mechanism is:

RM = p1Pr(v1,v2)∼π[v1 ≥ p1] + p2Pr(v1,v2)∼π[v1 < p1 ∩ v2 ≥ p2]

=
1
m

+ p2Pr(v1,v2)∼π[v1 < p1 ∩ v2 ≥ p2] ≤
1
m

+ p2Pr(v1,v2)∼π[v2 ≥ p2] =
2
m
.

Therefore:
lim

m→∞

RM
OR

= lim
m→∞

RM
OS W

≤ lim
m→∞

2∑
a∈[m] 1/a

= 0.

The above example establishes the non-existence of a good sequential posted price mechanism in
the case where the service has to be provided to a single buyer. Suppose now that the service can be
provided to 2 buyers, and each buyer gets the service at most once. Consider again two buyers whose
values are drawn from the probability distribution π as defined above. As above, by symmetry we
may assume that our posted price mechanism first proposes price p1 to buyer 1, and then proposes
either price p2 or p′2 to buyer 2: p2 is proposed in case the offer was rejected by buyer 1, and p′2
is proposed otherwise. The difference with the previous analysis for the unit supply case is that the
mechanism proposes a price to buyer 2 regardless of whether buyer 1 accepted the offer or not.

We derive:

RM = p1Pr(v1,v2)∼π[v1 ≥ p1 ∩ v2 < p′2] + p2Pr(v1,v2)∼π[v1 < p1 ∩ v2 ≥ p2]

+ (p1 + p′2)Pr(v1,v2)∼π[v1 ≥ p1 ∩ v2 ≥ p′2]

≤
2
m

+ (p1 + p′2)Pr(v1,v2)∼π[v1 ≥ p1 ∩ v2 ≥ p′2]

≤
2
m

+ 2 max{p1, p′2}Pr(v1,v2)∼π[v1 ≥ max{p1, p′2}] ≤
4
m
.

The optimal incentive compatible mechanism works by giving the service to both buyers while charg-
ing the bid of buyer 1 to buyer 2, and charging the bid of buyer 2 to buyer 1. The resulting expected
revenue is exactly the expected optimal social welfare: OR = OS W = 1

m
∑m

a=1
2
a . We therefore obtain

lim
m→∞

RM
OR

= lim
m→∞

RM
OS W

≤ lim
m→∞

4∑
a∈[m] 2/a

= 0.

The above yields an impossibility result for 2-limited supply. By adding to this instance dummy
buyers that always have valuation 0, we obtain an impossibility result for k-limited supply, where
k ∈ N. ut



F.2 Proof of Theorem 3

Proof. We prove this for the case of k = n. The proof is easy to adapt for different k.
Let n ∈ N and m = 2n. We prove this claim by specifying an instance In with n buyers, and proving

that limn→0 RM(In)/OR(In) = 0, where RM(In) denotes the largest expected revenue achievable by
any enhanced sequential posted price mechanism on In, and OR(In) denotes the largest expected
revenue achievable by a dominant strategy IC, ex-post IR mechanism.

In is defined as follows. Let ε ∈ R>0 be a number smaller than 1/nm2. The valuation distribution
π is the one induced by the following process: (i) Draw a buyer i? from the set [n] uniformly at
random; (ii) Draw numbers {c j : j ∈ [n] \ {i?}} independently from [m] uniformly at random; (iii) For
all j ∈ [n] \ {i?}, set v j = c jε; (iv) Set

vi? =
1(∑

j∈[n]\{i?} c j
)
mod m

+ 1
. (7)

Observe that for this distribution it holds that for all i ∈ [n], the valuation vi is uniquely determined
by the valuations (v j) j∈[n]\{i}. The optimal (direct revelation) mechanism can therefore extract the
total optimal social welfare as its revenue, as follows: it provides service to every buyer, and sets the
payment as follows. Let bi be the bid, i.e., the reported valuation, of buyer i. Then,

– if b j < 1/m for all j ∈ [n] \ {i}, charge i a price of 1/
((∑

j∈[n]\{i} b j/ε
)
mod m

+ 1
)

;

– otherwise, if there is a buyer j ∈ [n]\{i} and a number ci ∈ [m] such that b j = 1/
((

ci +
∑
`∈[n]\{i, j} b`/ε

)
mod m

+ 1
)
,

then charge i the price ciε;
– otherwise, the mechanism charges i an arbitrary price.

This mechanism is dominant strategy IC because the mechanism’s decision to provide service to a
buyer does not depend on his bid, and the price that a buyer is charged is not dependent on his own
bid. This mechanism is ex-post IR because bidding truthfully always gives the buyer a utility of 0.
This mechanism achieves a revenue equal to the optimal social welfare because (by definition of the
pricing rule) the price that a buyer is charged is equal to the valuation of that buyer, if all buyers
bid truthfully. Also, note that the third bullet in the above specification of the mechanism will not
occur when the buyers bid truthfully, and is only included for the sake of completely specifying the
mechanism.

We argue that OR(In) = E~v∼π
[∑

i∈[n] vi
]

=
∑

i∈[n] E~v∼π[vi] = (n − 1)mε/2 + Hm/m, where the
last equality follows because the expected valuation of each of the buyers is ((n − 1)/n)(mε/2) +

(1/n)(Hm/m). This in turn holds because a buyer is elected as buyer i? with probability 1/n, and buyer
i?’s marginal distribution is the distribution π′ induced by drawing a value from the set {1/a : a ∈ [m]}
uniformly at random. The latter distribution has already been encountered in the beginning of Section
3.1, where we concluded that its expected value is Hm/m.

We now proceed to prove an upper bound on RM(In). Let M be an arbitrary enhanced posted price
mechanism. Because M is randomized, running M on In can be viewed as a probability distribution
on a sample space of deterministic enhanced posted price mechanisms that are run on In. We analyze
the revenue of the mechanism conditioned on three disjoint events that form a partition of this sample
space. Consider first the event E1 that buyer i? gets asked for his valuation (when running M on In).
Conditioned on this event, the mechanism does not attain a revenue of more than (n − 1)mε because
the revenue of each buyer in [n] \ {i?} is at most mε.

Consider next the event E2 where buyer i? does not get asked for his valuation and buyer i? is
not the last buyer that is selected. Then a price pi? is proposed to i?. Without loss of generality, M
draws pi? from a probability distribution Pi? with finite support, and the choice of distribution Pi?

depends on the sequence S of buyers queried prior to i? together with the responses of the buyers
in S . These responses take the form of a reported valuation in case a buyer in S is asked to report
his valuation, and the form of an accept/reject decision otherwise. Because i? is not the last buyer



selected, [n] \ (S ∪ {i?}) is non-empty, and there exists a buyer j ∈ [n] \ (S ∪ {i?}) such that the choice
of Pi? does not depend on c j. By the fact that c j is drawn independently and uniformly at random
from [m] for all j ∈ [n] \ (S ∪ {i?}) and by (7), the marginal probability distribution of the valuation
of buyer i? conditioned on E2, is π′ (which we defined above). Therefore

Epi?∼Pi? ,~v∼π
[pi?Pr[vi? ≤ pi?]] = Epi?∼Pi? ,~v∼π

′[pi?Pr[vi? ≤ pi?]] =
1
m
,

where the last equality follows from (6). Thus, the expected revenue of M conditioned on E2 is at
most 1/m + (n − 1)mε.

In the event E3, the mechanism selects i? last. The expected revenue of M conditioned on this
event is at most the expected maximum social welfare: (n−1)mε/2 + Hm/m. The probability of event
E3 occurring is 1/n, because of the following. For ` ∈ [n], let E`

3 be the event that i? is not the `-th
buyer selected by M, and let E<`

3 be the event that i? is not among the first ` − 1 buyers selected by
M. Note that this means that Pr[E<1

3 ] = 1. Then,

Pr[E3] = Pr[E<n
3 ] = Pr[En−1

3 | E<n−1
3 ]Pr[E<n−1

3 ] =
∏

`∈[n−1]

Pr[E`
3 | E

<`
3 ].

For every ` ∈ [n−1], and every set S of `−1 buyers, it holds that if i? < S and M selects S as the first
`− 1 buyers, the probability of selecting buyer i? as the `-th buyer is 1/(n− (`− 1)), by the definition
of π (particularly because buyer i? is a buyer picked uniformly at random). Therefore,

Pr[E3] = Pr[E<n
3 ] =

∏
`∈[n−1]

(
1 −

1
n − (` − 1)

)
=

∏
`∈[n−1]

n − `
n − ` + 1

=
1
n
.

Thus, we obtain the following upper bound on RM(In):

RM(In) ≤ Pr[E1](n − 1)mε + Pr[E2]
(

1
m

+ (n − 1)mε
)

+
1
n

(
(n − 1)mε

2
+

Hm

m

)
≤

1
m

+ 2(n − 1)mε +
mε
2

+
Hm

mn
≤ 3(n − 1)mε +

Hm

mn
+

1
m
.

This leads us to conclude that

RM(In)
OR(In)

≤
3nmε + Hm/mn + 1/m

Hm/m
=

3nm2ε + Hm/n + 1
Hm

≤
Hm/n + 4

Hm
=

1
n

+
4

H2n
∈ O

(
1
n

)
. ut

F.3 Proof of Lemma 1

Proof. The second claim has been already proved in the proof sketch. It remains to prove the first
claim. To this aim, let us first introduce some specialized notation: Let σ now be a probability distri-
bution on a finite subset of R≥0 and x ∈ supp(σ), we write precσ(x) to denote max supp(σ) ∩ [0, x) if
supp(σ) ∩ [0, x) is non-empty. Otherwise, if supp(σ) ∩ [0, x) = ∅, we define precσ(x) = 0. Similarly,
we write succσ(x) to denote min supp(σ) ∩ (x,∞]. (We leave succσ(x) undefined if supp(σ) ∩ (x,∞]
is empty.)

Suppose now that A is an optimal dominant strategy IC, ex-post IR mechanism. For ~v ∈ supp(π),
denote by x(~v) the expected allocation vector output by A when the buyers report valuation vector ~v
(so that for i ∈ [n], the value xi(~v) is the probability that i gets allocated service, when the buyers
report ~v) and denote by p(~v) the vector of expected prices charged by A when the buyers report
~v. Ex-post incentive compatibility states that vixi(vi,~v−i) − pi(vi,~v−i) ≥ vixi(v′i ,~v−i) − pi(v′i ,~v−i) for



all i ∈ [n], ~v−i ∈ supp(π−i), and (vi, v
′
i) ∈ supp(πi)2. and ex-post individual rationality states that

vixi(vi,~v−i) − pi(vi,~v−i) ≥ 0 for all i ∈ [n] and ~v ∈ supp(π).
The next lemma states that, in A, the allocation probability for a buyer is non-decreasing in his

reported valuation.

Lemma 5. For all i ∈ [n], all ~v−i ∈ π−i, and all vi, v
′
i ∈ supp(πi,~v−i), with vi < v

′
i , it holds that

xi(vi,~v−i) ≤ xi(v′i ,~v−i).

Proof. By way of contradiction, we assume that ε = xi(vi,~v−i) − xi(v′i ,~v−i) > 0. By ex-post incentive
compatibility it holds that

vixi(vi,~v−i) − pi(vi,~v−i) ≥ vixi(v′i ,~v−i) − pi(v′i ,~v−i),

v′i xi(v′i ,~v−i) − pi(v′i ,~v−i) ≥ v′i xi(vi,~v−i) − pi(vi,~v−i).

We now rewrite these inequalities as

vixi(vi,~v−i) − vixi(v′i ,~v−i) ≥ pi(vi,~v−i) − pi(v′i ,~v−i),

v′i xi(vi,~v−i) − v′i xi(v′i ,~v−i) ≤ pi(vi,~v−i) − pi(v′i ,~v−i).

This results in the following pair of inequalities.

viε ≥ pi(vi,~v−i) − pi(v′i ,~v−i),

v′iε ≤ pi(vi,~v−i) − pi(v′i ,~v−i).

The two inequalities contradict each other, because v′i > vi and we assumed ε > 0. ut

The next lemma upper bounds the prices charged by A.

Lemma 6. For all i ∈ [n], all ~v−i ∈ supp(~v−i) and all vi ∈ supp(πi,~v−i), it holds that

pi(vi,~v−i) ≤ vixi(vi,~v−i) −
∑

v′i∈supp(πi,~v−i ) : v′i<vi

(succπi,~v−i
(vi) − vi)xi(v′i ,~v−i). (8)

Proof. For v′i ∈ supp(πi,~v−i) the ex-post IC constraint for ~v−i, v
′
i , precπi,~v−i

(vi) can be written as

v′i(xi(v′i ,~v−i) − xi(v′′i ,~v−i)) ≥ pi(v′i ,~v−i) − pi(v′′i ,~v−i),

where v′′i = precπi,~v−i
(vi). Summing the above over all v′i ∈ supp(πi,~v−i), v

′
i < vi yields (8). ut

The optimal revenue among all ex-post IC, ex-post IR mechanisms (and thus the expected revenue
of A) can be written as the following linear program, where (x(~v))~v∈supp(π) and (p(~v))~v∈supp(π) are the
variables:

max
{ ∑

i∈[n]

∑
~v∈supp(π)

pi(~v)

∣∣∣∣∣∣ (9)

∀i ∈ [n],~v ∈ supp(π) : vixi(~v) − pi(~v) ≥ 0 (10)

∀i ∈ [n], (vi, v
′
i) ∈ supp(πi)2,~v−i ∈ supp(π−i,vi) :

vixi(vi,~v−i) − pi(vi,~v−i) ≥ vixi(v′i ,~v−i) − pi(v′i ,~v−i) (11)

∀~v ∈ supp(π) :
∑

i

xi(~v) ≤ k (12)

∀i ∈ [n],~v ∈ supp(π) : 0 ≤ xi(~v) ≤ 1
}

(13)



In the above linear program, (10) are the ex-post IR constraints, (11) are the ex-post IC constraints,
and (12) expresses that the service cannot be provided to more than k buyers.

By Lemma 5, it is possible to add to the above linear program the constraints xi(vi,~v−i) ≥
xi(precπi,~v−i

(vi)) for i ∈ [n],~v−i ∈ supp(π−i), vi ∈ supp(πi,~v−i). Moreover, by Lemma 6, replacing the
objective function by

∑
i∈[n]

∑
~v∈supp(π)

π(~v)

vixi(vi,~v−i) −
∑

v′i∈supp(πi,~v−i ) : v′i<vi

(succπi,~v−i
(vi) − vi)xi(v′i ,~v−i)


and removing the constraints (10) and (11) results in the following linear program that upper bounds
the optimal revenue among the ex-post IC, ex-post IR mechanisms:

max
{ ∑

i∈[n]

∑
~v∈supp(π)

π(~v)

vixi(vi,~v−i) −
∑

v′i∈supp(πi,~v−i ) : v′i<vi

(succπi,~v−i
(vi) − vi)xi(v′i ,~v−i)


∣∣∣∣∣∣ (14)

∀i ∈ [n],~v ∈ supp(π) : xi(~v) ≥ xi(precπi,~v−i
(vi),~v−i) (15)

∀~v ∈ supp(π) :
∑

i

xi(~v) ≤ k (16)

∀i ∈ [n],~v ∈ supp(π) : 0 ≤ xi(~v) ≤ 1
}

(17)

We will show that the linear program (4.2–3) is equivalent to the one defined above. Set yi(~v) =

xi(~v) − xi(precπi,~v−i
(vi),~v−i) for all i ∈ [n],~v ∈ supp(π), and observe that the constraints (15), (16) and

(17) are then equivalent to (1), (2) and (3) respectively. Moreover, with this correspondence between
y and x, we can rewrite the objective function as follows:

∑
i∈[n]

∑
~v∈supp(π)

π(~v)

vixi(vi,~v−i) −
∑

v′i∈supp(πi,~v−i ) : v′i<vi

(succπi,~v−i
(vi) − vi)xi(v′i ,~v−i)


=

∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

πi,~v−i(vi)vixi(vi,~v−i)

−
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

πi,~v−i(vi)
∑

v′i∈supp(πi,~v−i ) : v′i<vi

(succπi,~v−i
(vi) − vi)xi(v′i ,~v−i)

=
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

πi,~v−i(vi)vixi(vi,~v−i)

−
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

xi(vi,~v−i)(succπi,~v−i
(vi) − vi)Prv′i∼πi,~v−i

[v′i > vi]

=
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

xi(vi,~v−i)(πi,~v−i(vi)vi

− (succπi,~v−i
(vi) − vi)Prv′i∼πi,~v−i

[v′i > vi])

=
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

xi(vi,~v−i)(Prv′i∼πi,~v−i
[v′i ≥ vi]vi

− succπi,~v−i
(vi))Prv′i∼πi,~v−i

[v′i > vi])

=
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

(xi(vi,~v−i) − xi(precπi,~v−i
(vi),~v−i))viPrv′i∼πi,~v−i

[v′i ≥ vi]

=
∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

Prv′i∼πi,~v−i
[v′i ≥ vi]viyi(vi,~v−i).



This completes the proof. ut

F.4 Proof of Lemma 3

Proof. We will show that the expected revenue of Mk
π is at least

2 −
√

e
4

∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi∈supp(πi,~v−i )

Prv′i∼πi,~v−i
[v′i ≥ vi]viy

∗
i (vi,~v−i),

which is by Theorem 1 and the objective function (4.2) a (2−
√

e)/4 fraction of the expected revenue
of the optimal ex-post IC, ex-post IR mechanism.

For a vector of valuations ~v ∈ supp(π) and a buyer i ∈ [n], denote by Di,~v−i the probability
distribution from which mechanism Mk

π(~v) draws a price that is offered to buyer i, in case iteration
i ∈ [n] is reached (as described in the definition of the mechanism). We let V be a number that exceeds
max{vi : i ∈ [n],~v ∈ supp(π)} and represent by V the option where Mk

π(~v) chooses the “do nothing”-
option during iteration i, so that Di,~v−i is a probability distribution on the set {V} ∪ {vi : y∗i (vi,~v−i) > 0}.
Let us formulate an initial lower bound on the expected revenue of Mk

π.

E~v∼π[revenue of Mk
π(~v)]

= E ~v∼π,
p1∼D1,~v−1 ,

...
pn∼Dn,~v−n

∑
i∈[n]

pi1[pi ≤ vi]1[|{ j ∈ [i − 1] : p j ≤ v j}| < k]


=

∑
i∈[n]

E ~v∼π,
p1∼D1,~v−1 ,

...
pn∼Dn,~v−n

[
pi1[pi ≤ vi]1[|{ j ∈ [i − 1] : p j ≤ v j}| < k]

]

=
∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

p1∈supp(D1,~v−1 )

...
pi∈supp(Di,~v−i )

pi1[pi ≤ vi]1[|{ j ∈ [i − 1] : p j ≤ v j}| < k]
∏
j∈[i]

D j,~v− j(p j)

=
∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i )
: pi≤vi

piDi,~v−i(pi)
∑

p1∈supp(D1,~v−1 )

...
pi−1∈supp(Di−1,~v−(i−1) )
: |{ j∈[i−1]|p j≤v j}|<k

∏
j∈[i−1]

D j,~v− j(p j)

=
∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i )
: pi≤vi

piy
∗
i (pi,~v−i)

2
Pr p1∼D1,~v−1

...
pi−1∼Di−1,~v−(i−1)

[|{ j ∈ [i − 1] : p j ≤ v j}| < k]

≥
∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i )
: pi≤vi

piy
∗
i (pi,~v−i)

2
Pr p1∼D1,~v−1

...
pn−1∼Dn−1,~v−(n−1)

[|{ j ∈ [n − 1] : p j ≤ v j}| < k].

(18)

For the second equality, we applied linearity of expectation; the third equality follows from the defini-
tion of expected value; to obtain the fourth inequality we eliminate the indicator functions by remov-
ing the appropriate terms from the summation; in the fifth inequality we substitute Di,~v−i(pi,~v−i) and
D j,~v− j(p′j,~v− j) by concrete probabilities. For the last inequality we lower bounded the last probability
in the expression by replacing i by n.



For ~v ∈ supp(π) and i ∈ [n − 1], let us denote by z~vi the probability that a price drawn from Di,~v−i

does not exceed vi, i.e.,

z~vi =
∑

pi∈supp(Di,~v−i ) : pi≤vi

Di,~v−i(pi) =
∑

v′i∈supp(πi,~v−i ) : v′i≤vi

y∗i (v′i ,~v−i)
2

,

and let X~vi denote the random variable that takes the value 1 with probability z~vi and the value 0 with
probability 1 − z~vi . Then the final probability in the derivation above, i.e.,

Pr p1∼D1,~v−1
...

pn−1∼Di−1,~v−(n−1)

[|{ j ∈ [n − 1] : p j ≤ v j}| < k]

can be written as

1 − Pr

 ∑
i∈[n−1]

X~vi ≥ k

 .
Let µ = E

[∑
i∈[n−1] X~vi

]
. Next, we use a Chernoff bound:

Theorem 7 (Chernoff bound (as in [22]).). Let X1, . . . , Xn be independent random (0, 1)-variables
such that, for i ∈ [n], Pr[Xi = 1] = pi where pi ∈ [0, 1]. Then, for X =

∑
i∈[n] Xi, µ = E[X] =

∑
i∈[n] pi

and any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

This implies that the expression above is bounded as follows.

1 − Pr

 ∑
i∈[n−1]

X~vi ≥
(
1 +

(
k
µ
− 1

))
µ

 ≥ 1 −
(

ek/µ−1

(k/µ)k/µ

)µ
.

By the definition of z~vi and the constraint (2) of the linear program, it holds that µ =
∑

i∈[n−1] z~vi ≤ k/2.
We can lower bound the expression above by replacing µ by k/2. To see this, rewrite it first into the
following:

1 −
(

ek/µ−1

(k/µ)k/µ

)µ
= 1 −

ek−µ+k ln(µ)

kk .

The derivative of the exponent of e (with respect to µ) is positive for µ ∈ [0, k], which means that
the exponent of e is increasing in µ on [0, k]. Thus, replacing µ by its upper bound k/2 increases the
exponent and therefore decreases the expression above. Therefore:

1 − Pr

 ∑
i∈[n−1]

X~vi ≥ k

 ≥ 1 −
( e
4

)k/2
≥ 1 −

( e
4

)1/2
=

2 −
√

e
2

. (19)

Continuing from (18), we obtain

E~v∼π[revenue of Mk
π(~v)] ≥

∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i ) : pi≤vi

pi
y∗i (pi,~v−i)

2
2 −
√

e
2

=
2 −
√

e
4

∑
i∈[n]

∑
~v∈supp(π)

π(~v)
∑

pi∈supp(Di,~v−i ) : pi≤vi

piy
∗
i (pi,~v−i)

=
2 −
√

e
4

∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

vi,pi∈supp(πi,~v−i ) : pi≤vi

πi,~v−i(vi)piy
∗
i (pi,~v−i)



=
2 −
√

e
4

∑
i∈[n]

∑
~v−i∈supp(π−i)

π−i(~v−i)
∑

pi∈supp(πi,~v−i ) : pi≤vi

Pr~v−i∼πi,~v−i
[vi ≥ pi]piy

∗
i (pi,~v−i),

which proves the first of the two claims. For the second claim, observe that (19) states a lower bound
of (2 −

√
e)/2 on the probability that all players get selected by the mechanism. Therefore, we can

combine (19) with the principle explained above, which allows us to transform Mk
π into a dominant

strategy IC blind offer mechanism M̂k
π. Observe now that (18) is still a lower bound on the revenue of

M̂k
π so that the revenue analysis of Mk

π also holds for M̂k
π. ut


