
Delayed-Input Non-Malleable Zero Knowledge and

Multi-Party Coin Tossing in Four Rounds

Michele Ciampi
DIEM

Università di Salerno
ITALY

mciampi@unisa.it

Rafail Ostrovsky
UCLA

Los Angeles
rafail@cs.ucla.edu

Luisa Siniscalchi
DIEM

Università di Salerno
ITALY

lsiniscalchi@unisa.it

Ivan Visconti
DIEM

Università di Salerno
ITALY

visconti@unisa.it

Abstract

In this work we start from the following two results in the state-of-the art:
1. 4-round non-malleable zero knowledge (NMZK): Goyal et al. in FOCS 2014 showed the first 4-round

one-one NMZK argument from one-way functions (OWFs). Their construction requires the prover
to know the instance and the witness already at the 2nd round.

2. 4-round multi-party coin tossing (MPCT): Garg et al. in Eurocrypt 2016 showed the first 4-round
protocol for MPCT. Their result crucially relies on 3-round 3-robust parallel non-malleable com-
mitments. So far there is no candidate construction for such a commitment scheme under standard
polynomial-time hardness assumptions.

We improve the state-of-the art on NMZK and MPCT by presenting the following two results:
1. a delayed-input 4-round one-many NMZK argument ΠNMZK from OWFs; moreover ΠNMZK is also a

delayed-input many-many synchronous NMZK argument.
2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs; ΠMPCT uses ΠNMZK as subprotocol and

exploits the special properties (e.g., delayed input, many-many synchronous) of ΠNMZK.
Both ΠNMZK and ΠMPCT make use of a special proof of knowledge that offers additional security guarantees
when played in parallel with other protocols. The new technique behind such a proof of knowledge is an
additional contribution of this work and is of independent interest.

1 Introduction

Non-malleable zero-knowledge (NMZK) and secure multi-party computation (MPC) are fundamental prim-
itives in Cryptography. In this work we will study these two primitives and for the case of MPC we will
focus on the coin-tossing functionality that is among the most studied functionalities.

NMZK. The first construction of NMZK was given by Dolev at at. in [DDN91]. Later on, Barak in [Bar02]
showed the first constant-round construction. An improved construction was then given by Pass and Rosen
in [PR05, PR08]. The work of Goyal et al. [GRRV14] obtained the first round-optimal construction requiring
only 4 rounds and one-way functions (OWFs). Their construction requires the instance and the witness to
be known already when the prover plays his first round. Their definition is the standard one-one definition
where the adversary opens two sessions, one with a prover and one with a verifier.

1

The fact that the instance and the witness need to be known already at the second round is an important
limitation when NMZK is used as subprotocol to prove statements about another subprotocol played in
parallel. Moreover the one-one security is an important limitation when NMZK is used in a multi-party
scenario where several of such argument systems are played in parallel.

The above two limitations clearly raise the following natural and interesting open questions:

Open Question 1: is there a 4-round delayed-input NMZK argument system?

Open Question 2: is there a 4-round many-many synchronous NMZK argument system?

Multi-party coin-flipping (MPCT). In [KOS03], Katz et al. obtained a constant-round secure MPC
protocol using sub-exponential hardness assumptions. This results was then improved by Pass in [Pas04]
that showed how to get bounded-concurrent secure MPC for any functionality with standard assumptions.
Further results of Goyal [Goy11] and Goyal et al. [GLOV12] relied on better assumptions but with a round
complexity still far from optimal.

A very recent work of Garg et al. [GMPP16b] makes a long jump ahead towards fully understanding the
round complexity of secure MPCT. They show that the existence of a 3-round 3-robust parallel non-malleable
commitment scheme implies a 4-round protocol for secure MPCT for polynomially many coins with black-
box simulation. Some candidate instantiations of such special commitment scheme [GMPP16a, Pol16] are
the one of Pass et al. [PPV08] based on non-falsifiable assumptions, or the one of Ciampi et al. [COSV16]
based on sub-exponentially strong one-to-one one-way functions. The achieved round complexity (i.e., 4
rounds) is proven optimal in [GMPP16b] when simulation is black box and the number of bits in the output
of the functionality is superlogarithmic.

A very recent result of Ananth et al. [ACJ17] constructs a 4-round MPC protocol for any functionality
assuming DDH w.r.t. superpolynomial-time adversaries. The above state-of-the art leaves open the following
question.

Open Question 3: is there a 4-round secure MPCT protocol under standard assumptions?

1.1 Our Contribution

In this paper we solve the above 3 open problems. More precisely we present the following results:
1. a delayed-input 4-round one-many NMZK argument ΠNMZK from OWFs, therefore solving Open Ques-

tion 1; moreover ΠNMZK is also a delayed-input many-many synchronous NMZK argument, therefore
solving Open Question 2;

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs, therefore solving Open Question 31.
The two constructions are not uncorrelated. Indeed ΠMPCT uses ΠNMZK as subprotocol and exploits

the special properties (e.g., delayed input, many-many synchronous) of ΠNMZK. Moreover both ΠNMZK and
ΠMPCT make use of a special proof of knowledge that offers additional security guarantees when played in
parallel with other protocols. Designing such a proof of knowledge is an additional contribution of this work
and is of independent interest.

Interestingly, several years after the 4-round zero knowledge argument system from OWFs of [BJY97],
the same optimal round complexity and optimal complexity assumptions have been shown sufficient in this
work for delayed-input NMZK and in [COP+14] for resettably sound zero knowledge.

More details on our two new constructions follow below.

1.2 MPCT from NMZK

A first main idea that allows us to bypass the strong requirements of the construction of [GMPP16b] is that
we avoid robust/non-malleable commitments and instead focus on non-malleable zero knowledge. Since we

1An unpublished prior work of Goyal et al. [GKP+17] achieves the same result on MPCT using completely different techniques.

2

want a 4-round MPCT protocol, we need to rely on 4-round NMZK. The only known construction is the one
of [GRRV14]. Unfortunately their NMZK argument system seems to be problematic to use in our design of a
4-round MPCT protocol. There are two main reasons. The first reason is that the construction of [GRRV14]
uses the technique of secure computation in the head and therefore requires the instance already in the second
round. This is often a problem when the NMZK argument is played in parallel with other subprotocols as
in our construction. Indeed these additional subprotocols end in the 3rd or 4th round and typically2 need
to be strengthened by a zero-knowledge proof of correctness. The second reason is that in the setting of
4-round MPCT the adversary can play as a many-many synchronous man-in-the-middle (MiM), while the
construction of [GRRV14] is proved one-one non-malleable only.

We therefore improve the state-of-the-art on NMZK constructing a delayed-input NMZK argument
system. Our construction only needs one-way functions and is secure even when a) there are polynomially
many verifiers (i.e., it is a one-many NMZK argument), and b) there are polynomially many provers and
they are in parallel. We will crucially use both the delayed-input property and security with parallelized
many provers and verifiers in our secure MPCT construction. Moreover our NMZK is also crucially used
in [COSV17b].

1.3 Technical Overview on Our NMZK

Issues in natural constructions of NMZK. A natural construction of a NMZK argument from OWFs
consists of having: 1) a 3-round sub-protocol useful to extract a trapdoor from the verifier of NMZK; 2)
a 4-round non-malleable commitment of the witness for the statement to be proved; 3) a 4-round witness-
indistinguishable proof of knowledge (WIPoK) to prove that either the committed message is a witness or the
trapdoor is known. By combining instantiations from OWFs of the above 3 tools in parallel we could obtain
4-round NMZK from OWFs. The simulator-extractor for such a scheme would 1) extract the trapdoor from
the verifier; 2) commit to 0 in the non-malleable commitment; 3) use the trapdoor as witness in the WIPoK;
4) extract the witness from the arguments given by the MiM by extracting from the WIPoK or from the
non-malleable commitment.

Unfortunately it is not clear how to prove the security of this scheme when all sub-protocols are squeezed
into 4 rounds. The problem arises from the interactive nature of the involved primitives. Indeed notice
that the 4-round non-malleable commitment is executed in parallel with the 4-round WIPoK. When in a
hybrid of the security proof the trapdoor is used as witness in the 4-round WIPoK played on the left, the
MiM could do the same and also commits to the message 0 in the non-malleable commitment. To detect
this behavior, in order to break the WI, the reduction should extract the message committed in the non-
malleable commitment by rewinding the MiM. This implies that also the 4-round WIPoK involved in the
reduction must be rewound (we recall that these two sub-protocols are executed in parallel). It is important
to observe that if in some hybrid we allow the MiM to commit to the message 0 when the witness of the
WIPoK given on the left is switched to the trapdoor, then the simulator-extractor (that corresponds to the
final hybrid) will have no way to extract a witness from the MiM (and this is required by the definition of
NMZK). Indeed from a successful MiM that commits to 0 the extraction from the WIPoK can only give in
output the trapdoor. Therefore the simulator-extractor would fail.

A special delayed-input WIPoK ΠOR. In order to overcome the above problem we follow a recent idea
proposed in [COSV17a] where non-interactive primitives instead of 3-rounds WIPoKs are used in order to
construct a concurrent non-malleable commitment in four rounds. In this way, in every security reduction to
such primitives, it will be always possible to extract the message committed in the non-malleable commitment
without interfering with the challenger involved in the reduction.

2Indeed, even the construction of [GMPP16b] that makes use of a special non-malleable commitments requires also a delayed-
input zero-knowledge argument.

3

In [COSV17a] the authors propose an ad-hoc technique that avoids such a rewinding issue by using
a combination of instance-dependent trapdoor commitments (IDTCom) and special honest-verifier zero
knowledge (Special HVZK) proofs of knowledge. In this paper we propose a generic approach to construct
a special delayed-input WIPoK ΠOR that can be nicely composed with other protocols in parallel. We
construct ΠOR in two steps.

In 1st step we consider the construction of 3-round WIPoK for NP of Lapidot and Shamir (LS) [LS90]3

that enjoys adaptive-input Special HVZK4 and observe that LS does not enjoy adaptive-input special sound-
ness. That is, given and accepting transcript (a, 0, z0) for the statement x0 and an accepting transcript
(a, 1, z1) for the statement x1, then only the witness x1 can be efficiently extracted. More precisely, only
the witness for the statement where the challenge-bit was equal to 15 (see Def. 9 for a formal definition of
adaptive-input special soundness) can be extracted. Therefore we propose a compiler that using LS = (P,V)
in a black-box way outputs a 3-round protocol LS′ = (P ′,V ′) that maintains the adaptive-input Special
HVZK and moreover enjoys adaptive-input special soundness.

In the second step we show how to combine the OR composition of statements proposed in [CDS94] with
LS′ in oder to obtain a WIPoK ΠOR such that: a) a reduction can be successfully completed even when there
are rewinds due to another protocol played in parallel; b) the statement (and the corresponding witness)
are required to be known only in the last round. Both properties are extremely helpful when a WIPoK is
played with other protocols in parallel.

We now give more details about the two steps mentioned above.
- First step: LS′ = (P ′,V ′). Our construction of LS′ works as follows. The prover P ′ runs two times P

using different randomnesses thus obtaining two first rounds of LS a0 and a1. Upon receiving the challenge-
bit b from the verifier V, the statement x to be proved and the corresponding witness w, P ′ runs P in
order to compute the answer z0 with respect to the challenge b for a0 and the answer z1 with respect to
the challenge 1− b for a1. V ′ accepts if both (a0, b, z0, x) and (a1, 1− b, z1, x) are accepting for V. We now
observe that every accepting transcript for LS′ contains a sub-transcript that is accepting for V where the
bit 1 has been used as a challenge. From what we have discussed above, it is easy to see that LS′ enjoys
adaptive-input special soundness.

- Second step: adaptive-input PoK for the OR of compound statements. We combine together two
executions of LS′ by using the trick for composing two Σ-protocols Σ0,Σ1 to construct a Σ-protocol for the
NP-language L0 OR L1 [CDS94]. Let the compound statement to be proved (x0, x1), with x0 ∈ L0 and
x1 ∈ L1, and let wb be the witness for xb. The protocol ΠOR proposed in [CDS94] considers two Σ-protocols
Σ0 and Σ1 (respectively for L0 and L1) executed in parallel, but after receiving the challenge c form the
verifier, the prover can use as challenges for Σ0 and Σ1 every pair (c0, c1) s.t. c0 ⊕ c1 = c. Therefore the
prover could choose in advance one of the challenge to be used, (e.g., c1−b), and compute the other one by
setting cb = c⊕c1−b. In this way the transcript for Σ1−b can be computed using the Special HVZK simulator
while the transcript for Σb is computed using the witness wb. Thus the prover has the “freedom” of picking
one out of two of the challenge before seeing c, but still being able to complete the execution of both Σ0

and Σ1 for every c. We will show that this “freedom” is sufficient to switch between using w0 and w1 (in
order to prove WI) even when it is required to answer to additional (and different) challenges c1, . . . , cpoly(λ)

(i.e., when some rewinds occur). Indeed it is possible to change the witness used (from w0 to w1) in two
steps relying first on the Special HVZK of Σ1, and then on the Special HVZK of Σ0. More precisely we
consider the hybrid experiment Hw0 as the experiment where in ΠOR the witness w0 is used (analogously
we define Hw1). We now consider Hw0,w1 that differs from Hw0 because both the witnesses w0 and w1 are
used. We prove that Hw0 and Hw0,w1 are indistinguishable due to the Special HVZK of Σ1 even tough ΠOR

3See Section C.1 for a detailed description of [LS90].
4By adaptive-input we mean that the security of the cryptographic primitive holds even when the statement to be proved is

adversarially chosen in the last round.
5For ease of exposition be consider LS with one-bit challenge, but our result hold for an arbitrarily chosen challenge length.

4

is rewound polynomially many times. The reduction works as follows. A challenge c1 is chosen before the
protocol ΠOR starts and the Special HVZK challenger is invoked thus obtaining (a1, z1). The transcript
for Σ0 is computed by the reduction using the witness w0 in order to answer to the challenge ci0 = ci ⊕ c1

for i = 1, . . . , poly(λ). We recall the we are in a setting where ΠOR could be rewound, and therefore the
reduction needs to answer to multiple challenges. We observe that the reduction to the Special HVZK is not
disturbed by these rewinds because c1 can be kept fixed. The same arguments can be used to prove that
Hw0,w1 is computationally indistinguishable from Hw1 .

We then show that ΠOR preserves the special-soundness of the input Σ-protocols, as well as preserves
the adaptive-input special soundness when instead of two Σ-protocols, two instantiations of LS′ are used.
Moreover the above reductions to Special HVZK can be done relying on adaptive-input Special HVZK.
Finally ΠOR can be upgrade from adaptive-input special soundness to adaptive-input PoK using a theorem
of [CPS+16b].

Our NMZK argument system NMZK. We run ΠOR in parallel with a 4-round public-coin one-one
honest-extractable synchronous non-malleable commitment scheme Πnm

6. A construction for such a scheme
in 4 rounds was given by [GPR16]. The prover of the NMZK argument runs ΠOR in order to prove either
the validity of some NP-statement, or that the non-malleable commitment computed using Πnm contains
a trapdoor. The simulator for NMZK works by extracting the trapdoor, committing to it using the non-
malleable commitment, and using knowledge of both the trapdoor and the opening information used to
compute the non-malleable commitment as a witness for ΠOR. The 3-round subprotocol from OWFs for
the trapdoor extraction follows the one of [COSV17a]. More precisely the trapdoor is represented by the
knowledge of two signatures under a verification key sent by the verifier in the 1st round. In order to allow
the extraction of the trapdoor, the verifier of NMZK sends a signature of a message randomly chosen in the
3rd round by the prover.

The security proof of one-many NMZK. The simulator of NMZK extracts the trapdoor7, and commits
to it using Πnm. Following the proof approach provided in [COSV16], we need to prove that the MiM
adversary does not do the same. More precisely we want to guarantee that there is no right session where
the MiM commits to two signatures of two different messages. The reduction to the non-malleability of the
underlying commitment scheme isolates one right session guessing that the MiM has committed there to the
trapdoor. The distinguisher for the non-malleable commitment takes as input the committed message an
checks if it corresponds to two signatures of two different messages for a given signature key.

The above proof approach works only with synchronous sessions (i.e., for synchronous one-many NMZK).
Indeed Πnm is secure only in the synchronous case. In order to deal with the asynchronous case we rely on
the honest-extractability of Πnm.

We recall that ΠOR is run in parallel with Πnm in order to ensure that either the witness for an NP-
statement x is known or the trapdoor has been correctly committed using Πnm. For our propose we only need
to ensure that the MiM never commits to the trapdoor. If this is not the case than there exists a right session
where the MiM is committing correctly to the trapdoor using Πnm with non-negligible probability. This
means that we can extract the message committed by the MiM by just relying on the honest-extractability
of Πnm. Therefore we can make a reduction to the hiding of Πnm

8.
In order to prove that also in the reductions to adaptive-input Special HVZK the MiM still does not

commit to the trapdoor we can uses the same approach explained above. Note that in these reductions it

6All such properties are pretty standard except honest extractability. Informally, this property means that there is a successful
extractor that gives in output the committed message having black-box access to a honest sender.

7The trapdoor for our protocol is represented by two signatures for a verification key chosen by the verifier.
8A rewind made in an asynchronous session does not interfere with (i.e., does not rewind) the challenger of the hiding of

Πnm.

5

is crucial that the rewinds needed to extract the committed message in Πnm do not disturb the challengers
involved in the reductions.

From one-many NMZK to synchronous many-many NMZK. Our one-many NMZK is also syn-
chronous many-many NMZK. Indeed, the simulator can extract (simultaneously) the trapdoor from the
right sessions, playing as described above. The only substantial difference is that we need to use a many-one
non-malleable commitment with all the properties listed above. Following the approach proposed in the
security proof of Proposition 1 provided in [LPV08], it is possible to claim that a synchronous (one-one)
non-malleable commitment is also synchronous many-one non-malleable.

1.4 4-Round Secure Multi-Party Coin Tossing

Our MPCT protocol will critically make use of our delayed-input synchronous many-many NMZK from
OWFs, and of an additional instantiation of ΠOR. Similarly to [GMPP16b] our protocol consists of each
party committing to a random string r, that is then sent in the clear in the last round. Moreover there
will be a simulatable proof of correctness of the above commitment w.r.t. r, that is given to all parties
independently. The output consists of the

⊕
of all opened strings. We now discuss in more details the

messages exchanged by a pair of parties P1 and P2 in our multi-party coin tossing protocol ΠMPCT. The
generalization to n players is straight-forward and discussed in Section 4.1.

Informal description of the protocol. P1, using a perfectly binding computationally hiding commit-
ment scheme, commits in the first round to a random string r1 two times thus obtaining com0, com1. Moreover
P1 runs ΠOR in order to prove knowledge of either the message committed in com0 or the message committed
in com1. In the last (fourth) round P1 sends r1. In parallel, an execution of a NMZK ensures that both com0

and com1 contain the same message r1 (that is sent in the fourth round)9. When P1 receives the last round
that contains r2, P1 computes and outputs r1⊕ r2. P2 symmetrically executes the same steps using as input
r2.

The simulator for ΠMPCT runs the simulator of NMZK and extracts the input r? from the malicious
party using the PoK extractor of ΠOR. At this point the simulator invokes the functionality thus obtaining
r and plays in the last round rs = r⊕ r?. Note that the values that the simulator commits in com0 and com1

are unrelated to rs and this is possible because the NMZK is simulated. The extraction of the input from
the adversary made by the simulator needs more attention. Indeed the security of NMZK will ensure that,
even though the simulator cheats (he commits to a random string in both com0 and com1) the adversary can
not do the same. Therefore the only way he can complete an execution of ΠMPCT consists of committing
two times to r? in the first round, and send the same value in the fourth round. This means that the value
extracted (in the third round) from the PoK extractor of ΠOR is the input of the malicious party.

Our security proof consists of showing the indistinguishability of hybrid experiments. The first hybrid
experiment differs from the real game by using the simulator of NMZK. The simulator, in order to extract
the trapdoor from the adversary, rewinds from the third to the second round, thus rewinding also ΠOR.
Indeed the adversary, for every different second round of the NMZK could sent a different second round
for ΠOR. This becomes a problem when we consider the hybrid experiment Hi where the witness for ΠOR

changes. Due to the rewinds made by the simulator of the NMZK it is not clear how to rely on the security
of the WI property of ΠOR (the challenger of WI would be rewound). This is the reason why, also in this
case, we need to consider an intermediate hybrid experiment Hw0,w1 where both witnesses of ΠOR can be
used. Then we can prove the indistinguishability between Hw0,w1 and Hi still relying on the Special HVZK
of the sub-protocol used in ΠOR (Blum’s protocol suffices in this case).

9Notice here how crucial is to delayed-input have synchronous many-many NMZK.

6

2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and
b are two strings then by a||b we denote the concatenation of a and b). For a finite set Q, x← Q sampling
of x from Q with uniform distribution. We use the abbreviation ppt that stays for probabilistic polynomial
time. We use poly(·) to indicate a generic polynomial function. A polynomial-time relation Rel (or polynomial
relation, in short) is a subset of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness for x. For a polynomial-time
relation Rel, we define the NP-language LRel as LRel = {x|∃ w : (x,w) ∈ Rel}. Analogously, unless otherwise
specified, for an NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL
is such that L = LRelL). We also use L̂ to denotes the language that includes L and all well formed instances
that are not in L. Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ)
the distribution of B’s output after running on private input β with A using private input α, both running
on common input γ. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution
where A receives a private input α, B receives a private input β and both A and B receive a common input
γ. Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution of
〈A(α), B(β)〉(γ), along with its randomness and its input. We denote by Ar an algorithm A that receives
as randomness r. In App. A and in App B we recall some useful definitions.

3 4-Round Delayed-Input NMZK from OWFs

Delayed-Input non-malleable zero knowledge. Following [LP11a] we use a definition that gives to the
adversary the power of adaptive-input selection. More precisely, in [LP11a] the adversary selects the instance
and then a Turing machine outputs the witness in exponential time. Here we slightly deviate (similarly
to [SCO+01]) by 1) requiring the adversary to output also the witness and 2) allowing the adversary to
make this choice at the last round. This choice is due to our application where delayed-input non-malleable
zero knowledge is used. Indeed we will show that this definition is enough for our propose. More precisely
our definition (similarly to [COSV17a]) we will allow the adversary to explicitly select the statement, and
as such the adversary will provide also the witness for the prover. The simulated game however will filter
out the witness so that the simulator will receive only the instance. This approach strictly follows the one
of [SCO+01] where adaptive-input selection is explicitly allowed and managed in a similar way. As final
remark, our definition will require the existence of a black-box simulator since a non-black-box simulator
could retrieve from the code of the adversary the witness for the adaptively generated statement. The non-
black-box simulator could then run the honest prover procedure, therefore canceling completely the security
flavor of the simulation paradigm.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with witness
relation RelL. Consider a ppt MiM adversary A that is simultaneously participating in one left session
and poly(λ) right sessions. Before the execution starts, P,V and A receive as a common input the security
parameter in unary 1λ. Additionally A receives as auxiliary input z ∈ {0, 1}?. In the left session A verifies
the validity of a statement x (chosen adaptively in the last round of Π) by interacting with P using identity
id of A’s choice. In the right sessions A proves the validity of the statements x̃1 . . . , x̃poly(λ)

10 (chosen
adaptively in the last round of Π) to the honest verifiers V1, . . . ,Vpoly(λ), using identities ĩd1, . . . , ĩdpoly(λ) of
A’s choice.

More precisely in the left session A, before the last round of Π is executed, adaptively selects the
statement x to be proved and the witness w, s.t. (x,w) ∈ RelL, and sends them to P11.

10We denote (here and in the rest of the paper) by δ̃ a value associated with the right session where δ is the corresponding
value in the left session.

11The witness w sent by A will be just ignored by the simulator.

7

Let ViewA(1λ, z) denote a random variable that describes the view of A in the above experiment.

Definition 1 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for an NP-language L
with witness relation RelL is delayed-input non-malleable zero knowledge (NMZK) if for any MiM adversary
A that participates in one left session and poly(λ) right sessions, there exists a expected ppt machine S(1λ, z)
such that:

1. The probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are computationally

indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).
2. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}?. Let x̃1, . . . , x̃poly(λ)

be the right-session statements appearing in View and let id and ĩd1, . . . , ĩdpoly(λ) be respectively the
identities used in the left and right sessions appearing in View. Then for every i ∈ {1, . . . , poly(λ)}, if
the i-th right session is accepting and id 6= ĩdi, then w̃i is s.t. (x̃i, w̃i) ∈ RelL.

The above definition of NMZK allows the adversary to select statements adaptively in the last round
both in left and in the right sessions. Therefore any argument system that is NMZK according to the
above definition enjoys also adaptive-input argument of knowledge. Following [LP11b] we say that a MiM
is synchronous if it “aligns” the left and the right sessions; that is, whenever it receives message i on the
left, it directly sends message i on the right, and vice versa. In our paper we also consider the notion of
delayed-input many-many synchronous NMZK, that is equal to the notion of delayed-input NMZK except
that polynomially many left and right sessions are played in synchronously.

In the rest of the paper, following [GRRV14], we assume that identities are known before the protocol
begins, though strictly speaking this is not necessary, as the identities do not appear in the protocol until
after the first prover message. The MiM can choose his identity adversarially as long as it differs from the
identities used by honest senders. As already observed in previous works, when the identity is selected by
the sender the id-based definitions guarantee non-malleability as long as the MiM does not behave like a
proxy (an unavoidable attack). Indeed the sender can pick as id the public key of a signature scheme signing
the transcript. The MiM will have to use a different id or to break the signature scheme.

3.1 Our Protocol: NMZK.

For our construction of a 4-round delayed-input non-malleable zero knowledge NMZK = (PNMZK,VNMZK)
for the NP-language L we use the following tools.

1. A signature scheme Σ = (Gen, Sign,Ver);
2. A 4-round public-coin synchronous honest-extractable non-malleable commitment scheme NM = (S,R)

(See App. A.3 for a formal definition).
3. Two instantiations of the adaptive-input special sound LS protocol described in App. C in order

to construct a 4-round delayed-input public-coin proof system for the OR of compound statement
ΠOR = (POR,VOR) as described in App. C.2. More in details we use the following proof systems.

1. A 4-round delayed-input public coin LSL = (PL,VL) for the NP-language L with adaptive-input
Special HVZK simulator SL. LSL = (PL,VL) is adaptive-input special sound for the corresponding
relation RelL with instance length `L.

2. A 4-round delayed-input public coin LSnm = (Pnm,Vnm) with adaptive-input Special HVZK sim-
ulator Snm. LSnm = (Pnm,Vnm) is adaptive-input special sound for the NP-relation RelLnm where

Lnm = {(vk, τ = (id, nm1, nm2, nm3, nm4), s1 : ∃(decnm, s0, σ1, msg1, σ2, msg2) s.t.

Ver(vk, msg1, σ1) = 1 AND Ver(vk, msg2, σ2) = 1 AND msg1 6= msg2 AND

R accepts (id, s1, decnm) as a valid decommitment of τ AND s0 ⊕ s1 = σ1||σ2}.
We denote with `nm the dimension of the instances belonging to Lnm. Informally by running LSnm

one can prove that the message committed using a non-malleable commitment XORed with the
value s1 represents two signatures for two different messages w.r.t. the verification key vk.

8

Moreover ΠOR is also adaptive-input PoK for the relation RelLOR
= {((xL, xnm), w) : ((xL, w) ∈

RelL) OR ((xnm, w) ∈ RelLnm)} (see Theorem 10 in App. C.2 for more details).

Overview of our protocol. We now give an high-level description of our delayed-input NMZK of Fig. 1.
For a formal description see Fig. 2.

In the first round VNMZK computes a pair of signature-verification keys (sk, vk) sending vk to PNMZK.
Also VNMZK computes the (public coin) first rounds nm1 of NM, ls1

L ← VL(1λ, `L) and ls1
nm ← VL(1λ, `nm).

VNMZK completes the first round by sending (vk, ls1
L, ls

1
nm, nm1) to PNMZK.

In the second round PNMZK computes ls2
L ← PL(1λ, ls1

L, `L) and sends ls2
L. Furthermore picks ls3

nm ←
{0, 1}λ and runs ls2

nm ← Snm(1λ, ls1
nm, ls

3
nm, `nm) in order to send ls2

nm. PNMZK now commits to a random
message s0 using the non-malleable commitment NM by running S on input 1λ, s0, nm1 and the identity id

thus obtaining and sending nm2. Also PNMZK sends a random message msg.
In the third round of the protocol, upon receiving msg, VNMZK computes and sends a signature σ of

msg by running Sign(sk, msg). VNMZK picks and sends c← {0, 1}λ. Also he computes and sends the (public
coin) third rounds nm3 of NM.

In the fourth round PNMZK checks whether or not σ is a valid signature for msg w.r.t. the verifica-
tion key vk. In the negative case PNMZK aborts, otherwise he continues with the following steps. PNMZK

computes ls3
L = ls3

nm ⊕ c. Upon receiving the instance x to be proved and the witness w s.t. (x,w) ∈ RelL,
PNMZK completes the transcript for LSL running ls4

L ← PL(x,w, ls3
L). At this point PNMZK completes the

commitment of s0 by running S on input nm3 thus obtaining (nm4, decnm). PNMZK picks a random string s1,
sets xnm = (vk, id, nm1, nm2, nm3, nm4, s1) and runs ls4

nm ← Snm(xnm). PNMZK completes the fourth round
by sending (ls3

L, ls
4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm).

The verifier VNMZK accepts x iff the following conditions are satisfied:
1. c is equal to ls3

L ⊕ ls3
nm;

2. VL(x, ls1
L, ls

2
L, ls

3
L, ls

4
L) = 1 and

3. Vnm(xnm, ls
1
nm, ls

2
nm, ls

3
nm, ls

4
nm) = 1.

The simulator extractor. Informally, the simulator SimNMZK of our protocol interacts with the ad-
versary ANMZK emulating both the prover in the left session and polynomially many verifiers in the right
sessions. In the right sessions SimNMZK interacts with ANMZK as the honest verifiers do. While, in the left
session for an instance x ∈ L chosen adaptively by ANMZK, SimNMZK proves, using ΠOR, that the message
committed in NM contains two signatures of two different messages w.r.t. the verification key vk. In more
details SimNMZK runs the adaptive-input Special HVZK simulator of LSL to complete the transcript for
LSL w.r.t. the instance x. In order to use the honest prover procedure to compute the transcript of LSnm,
SimNMZK extracts two signatures for two different messages by rewinding ANMZK from the third to the sec-
ond round and by committing to them using NM12. More precisely the simulator commits to a random
string s0, but computes s1 s.t. s1 = (σ1||σ2) ⊕ s0

13. Therefore the execution of ΠOR can be completed by
using the knowledge of the two signatures committed using NM. We use the xor trick originally provided
in [COSV16] in order to avoid any additional requirement w.r.t. the underlying non-malleable commitment
scheme NM. Indeed if the sender of NM could decide the message to commit in the last round, then SimNMZK

can simply compute the first round of NM, extract the signature, and compute the last round of NM by
committing to σ1||σ2. It is important to observe that even though the non-malleable commitment scheme
of [GPR16] fixes the message to be committed in the third round, there is in general no guarantee that such
a scheme is secure against an adversary that adaptively chooses the challenge messages in the last round
of the non-malleability security game. Therefore, even though the completeness of our scheme would work
without using the trick of [COSV16], it would be unclear, in general, how to prove the security of our final
scheme. A formal description of SimNMZK can be found in the proof of Theorem 1.

12W.l.o.g. we assume that the signatures σ1, σ2 include the signed messages.
13For ease of exposition we will simply say that ANMZK commits to two signatures using NM.

9

PNMZK(id) VNMZK(id)
vk

Upon receiving x,w
s.t. (x,w) ∈ RelL

msg

σ

ls
2

L
, ls2nm

c

ls
3

L
, ls4

L
, ls3nm, ls

4

nm

ls
1

L
, ls1nm nm1

nm2(s0)

nm3

nm4(s0) s1

- vk is a a verification key of a signature scheme and σ is a valid signature of the message msg.
- s0 and s1 are two random strings.
- τ = (id, nm1, nm2, nm3, nm4) represents the transcript of 〈S(s0),R〉(id) that is, a commitment of the

message s0 computed using the synchronous honest-extractable non-malleable commitment scheme
NM.

- ((ls1
L, ls

1
nm), (ls2

L, ls
2
nm), c, (ls3

L, ls
4
L, ls

3
nm, ls

4
nm)) is the transcript generated from an execution of ΠOR, in

more details:
- c is equal to ls3

nm ⊕ ls3
L.

- (ls1
L, ls

2
L, ls

3
L, ls

4
L) is the transcript output from the honest prover procedure of LSL proving the

knowledge of the witness for x ∈ L.
- (ls1

nm, ls
2
nm, ls

3
nm, ls

4
nm) is the transcript output of a adaptive-input Special HVZK simulator of LSnm

proving knowledge of a decommitment of τ to the message s0 s.t. s0 ⊕ s1 = σ1||σ2 where σ1, σ2

are two signatures of two different messages w.r.t vk.

Figure 1: Our 4-round delayed-input NMZK

The formal construction of our delayed-input NMZK NMZK = (PNMZK,VNMZK) for the NP-language L
can be found in Fig. 2.

Theorem 1. If OWFs exist, then NMZK is a 4-round delayed-input NMZK AoK for NP.

Proof. We divide the security proof in two parts, proving that NMZK enjoys delayed-input completeness
and NMZK. The proof of NMZK is divided also in two lemmas, one for each of the two properties of
Def. 1. Before that, we recall that LSnm and LSL can be constructed from OWFs (see App. A) as well as
Σ (using [Rom90]) and the 4-round public-coin synchronous honest-extractable non-malleable commitment
scheme NM (see Sec. A.3).

(Delayed-Input) Completeness. The completeness follows directly from the delayed-input complete-
ness of LSnm and LSL, the correctness of NM and the validity of Σ. We observe that, due to the delayed-input
property of LSL, the statement x (and the respective witness w) are used by PNMZK only to compute the
last round. Therefore also NMZK enjoys delayed-input completeness.

(Delayed-Input) NMZK. Following Definition 1 we start by describing how the simulator SimNMZK

for NMZK works. In the left session SimNMZK interacts with the MiM adversary ANMZK in the following
way. Upon receiving the first round, vk, ls1

L, ls1
nm, nm1, from ANMZK, SimNMZK on input ls1

nm computes ls2
nm

by running Pnm. SimNMZK picks ls3
L ← {0, 1}λ and runs SL on input 1λ, `L, ls1

L, ls3
L thus obtaining ls2

L.
SimNMZK, in order to commit to a random message s0 runs S on input nm1, the identity id and s0 thus
obtaining nm2. SimNMZK sends ls2

L, ls
2
nm, nm2 and a random message msg1 to ANMZK. Upon receiving the

third round, c, nm3, σ1, and instance x to be proved from ANMZK, the simulator checks whether or not σ1

is a valid signature for msg1 w.r.t. the verification key vk. In the negative case SimNMZK aborts, otherwise
SimNMZK rewinds ANMZK from the third to the second round in order to obtain a second signature σ2 for
a different message msg2. After the extraction of the signatures SimNMZK returns to the main thread and

10

Common input: security parameter λ, identity id ∈ {0, 1}λ instances length: `L, `nm.
Input to PNMZK: (x,w) s.t. (x,w) ∈ RelL, with (x,w) available only in the 4th round.
Commitment phase:

1. VNMZK → PNMZK

1. Run (sk, vk)← Gen(1λ).
2. Run ls1

L ← VL(1λ, `L).
3. Run ls1

nm ← Vnm(1λ, `nm).
4. Run R on input 1λ and id thus obtaining nm1.
5. Send (vk, ls1

L, ls
1
nm, nm1) to PNMZK.

2. PNMZK → VNMZK

1. Run ls2
L ← PL(1λ, `L).

2. Pick ls3
nm ← {0, 1}λ run ls2

nm ← Snm(1λ, ls1
nm, ls

3
nm, `nm).

3. Pick s0 ← {0, 1}λ and run S on input 1λ, id, nm1, s0 (in order to commit to the message s0)
thus obtaining nm2.

4. Pick a message msg← {0, 1}λ.
5. Send (ls2

L, ls
2
nm, msg, nm2) to VNMZK.

3. VNMZK → PNMZK

1. Pick c← {0, 1}λ.
2. Run R on input nm2 thus obtaining nm3.
3. Run Sign(sk, msg) to obtain a signature σ of msg.
4. Send (c, nm3, σ) to PNMZK.

4. PNMZK → VNMZK

1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2. Compute ls3

L = c⊕ ls3
nm.

3. Run ls4
L ← PL(x,w, ls3

L).
4. Run S on input nm3 thus obtaining (nm4, decnm).
5. Pick s1 ← {0, 1}λ, set xnm = (vk, nm1, nm2, nm3, nm4, s1) and run ls4

nm ← Snm(xnm).
6. Send (ls3

L, ls
4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm) to VNMZK.

5. VNMZK: output 1 iff the following conditions are satisfied.

1. c is equal to ls3
L ⊕ ls3

nm.
2. VL(x, ls1

L, ls
2
L, ls

3
L, ls

4
L) = 1.

3. Vnm(xnm, ls
1
nm, ls

2
nm, ls

3
nm, ls

4
nm) = 1.

Figure 2: Formal construction of our delayed-input NMZK.

11

computes the fourth round as follows14.
SimNMZK completes the commitment of s0 by running S on input nm3 thus obtaining (nm4, decnm) and

sending nm4. Furthermore SimNMZK sets s1 s.t. s1 = (σ1||σ2) ⊕ s0, xnm = (vk, id, nm1, nm2, nm3, nm4, s1),
wnm = (decnm, s0, σ1, msg1, σ2, msg2) and completes the transcript for LSnm obtaining ls4

nm by running the
prover procedure Pnm on input xnm, wnm and ls3

L⊕c. At this point SimNMZK runs the adaptive-input Special
HVZK simulator SL on input x thus obtaining ls4

L. Then the values (ls3
L, ls

4
L, nm4, s1, ls

3
nm, ls

4
nm, x, xnm) are sent

to ANMZK. At the end of the execution SimNMZK outputs ANMZK’s view in the main thread. Furthermore, he
uses the extractor of LSL to extract and output, from the poly(λ) right sessions, the witnesses w̃1, . . . , w̃poly(λ)

used by ANMZK to compute the transcript of ΠOR (the witnesses correspond to statements x̃i proved by
ANMZK in the i-th right session, for i = 1, . . . , poly(λ)).

Lemma 1. {SimNMZK
1(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ , where SimNMZK

1(1λ, z) denotes
the 1st output of SimNMZK.

In order to prove the above lemma we consider the series of hybrid experiments described below. In the
proof we denote with {ViewANMZK

Hi
(1λ, z)}λ∈N,z∈{0,1}∗ the random variable that describes the view of ANMZK

in the hybrid Hi(1λ, z). Let p the probability that in the real execution ANMZK completes the left session.

- We start considering the hybrid experiment H0(1λ, z) in which in the left session PNMZK interacts with
ANMZK and in the i-th right session VNMZKi interacts with ANMZK, for i = 1, . . . , poly(λ). Note that
{ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ = {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ .

The hybrid experimentH1(1λ, z) differs fromH0(1λ, z) only in the fact that in the left session ofH1(1λ, z)
ANMZK is rewound from the third to the second round, in order to extract two signatures σ1, σ2 for two
distinct messages (msg1, msg2) w.r.t. a verification key vk. Note that after p rewinds the probability of not
obtaining a valid new signature is less than 1/2. Therefore the probability that ANMZK does not give a
second valid signature for a randomly chosen message after λ/p rewinds is negligible in λ. For the above
reason the procedure of extraction of signatures for different messages in H1(1λ, z) succeeds except with
negligible probability. Observe that the above deviation increases the abort probability of the experiment
only by a negligible amount, therefore {ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ ≡s {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ .

- The hybrid experiment H2(1λ, z) differs from H1(1λ, z) only in the message committed using NM. In-
deed PNMZK commits using NM to two signatures σ1, σ2 of two distinct messages (msg1, msg2) instead of
a random message. In more details, PNMZK commits to a random string s0 using NM and in 4th round
sets and sends s1 = (σ1||σ2) ⊕ s0, instead of sending s1 as a random string. Observe that the proce-
dure of extraction of the signatures succeeds in H2(1λ, z) with non-negligible probability, because the first
three rounds are played exactly as in H1(1λ, z). Now we can claim that {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and

{ViewANMZK
H1

(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable by using the computationally-hiding
property of NM. Suppose by contradiction that there exist an adversary ANMZK and a distinguisher DNMZK

such that DNMZK distinguishes {ViewANMZK
H1

(1λ, z)}λ∈N,z∈{0,1}∗ from {ViewANMZK
H2

(1λ, z)}λ∈N,z∈{0,1}∗ . Then we
can construct an adversary AHiding that breaks the computationally hiding of NM in the following way.
AHiding sends to the challenger of the hiding game CHiding two random messages (m0,m1). Then, in the left
session AHiding acts as PNMZK except for messages of NM for which he acts as proxy between CHiding and
ANMZK. When AHiding computes the last round of the left session AHiding sets and sends s1 = σ1||σ2 ⊕m0.
In the right sessions AHiding interacts with AZK acting as VNMZK does. At the end of the execution AHiding

runs DNMZK and outputs what DNMZK outputs. It is easy to see that if CHiding commits to m1 then, AZK

acts as in H1(1λ, z), otherwise he acts as in H2(1λ, z). Note that the reduction to the hiding property of NM

14Note that it is possible to complete the main thread, due to the delayed-input completeness of LSnm, and to the fact that
we do not need to change the second round of NM (that is, we do not need to change the committed message s0) in order to
have xnm ∈ Lnm.

12

is possible because the rewinds to extract a second signature do not affect the execution with the challenger
of NM that remains straight-line.

- The hybrid experiment H3(1λ, z) differs from H2(1λ, z) in the way the transcript of LSnm is computed.
More precisely, the prover Pnm of LSnm is used to compute the messages ls2

nm and ls4
nm instead of using the

adaptive-input Special HVZK simulator. Note that due to the delayed-input property of LSnm the statement
xnm = (vk, nm1, nm2, nm3, nm4, s1) and the witness wnm = (decnm, s0, σ1, msg1, σ2, msg2) are required by Pnm

only to compute ls4
nm and are not needed to compute ls2

nm. Observe that the procedure of extraction of the
signatures succeeds in H3(1λ, z) with non-negligible probability due to the adaptive-input Special HVZK
of LSnm. From the adaptive-input Special HVZK of LSnm it follows that {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and

{ViewANMZK
H3

(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable.

- The hybrid H4(1λ, z) differs from H3(1λ, z) in the way the transcript of LSL is computed. More precisely,
the adaptive-input Special HVZK simulator of LSL is used to compute the messages ls2

L and ls4
L using

as input ls1
L received by ANMZK, the statement x and a random string ls3

L chosen by the hybrid experi-
ment. We observe that in order to complete the execution of ΠOR the honest prover procedure Pnm can
be used on input xnm, wnm and ls3

nm = ls3
L ⊕ c. Moreover adaptive-input Special HVZK of LSL ensures

that the extraction procedure of the signatures succeeds in H4(1λ, z) with non-negligible probability and
that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewANMZK

H3
(1λ, z)}λ∈N,z∈{0,1}∗ . Note that H4(1λ, z) corresponds to the

simulated experiment, that is the experiment where SimNMZK interacts with the adversary ANMZK emulating
both a prover in the left session and polynomially many verifiers in the right sessions. This implies that
{ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ = {S1(1λ, z)}λ∈N,z∈{0,1}? .

The proof ends with the observation that for all λ ∈ N, z ∈ {0, 1}∗ it holds that: {ViewANMZK(1λ, z)}λ,z =

{ViewANMZK
H0

(1λ, z)}λ,z ≈ · · · ≈ {ViewANMZK
H4

(1λ, z)}λ,z = {S1(1λ, z)}λ,z

Lemma 2. Let x̃1, . . . , x̃poly(λ) be the right-session statements appearing in View = SimNMZK
1(1λ, z) and let

id be the identity of the left session and ĩd1, . . . , ĩdpoly(λ) be the identities of right sessions appearing in
View. If the i-th right session is accepting and id 6= ĩdi for i = 1, . . . , poly(λ), then except with negligible
probability, the second output of SimNMZK(1λ, z) is w̃i such that (x̃i, w̃i) ∈ RelL for i = 1, . . . , poly(λ).

We now reconsider the hybrid experimentsHk for k = 0, . . . , 4 described in the security proof of Lemma 1,
and prove that they all enjoys an additional property. That is, in the right sessions ANMZK never commits,
using NM, to a message s̃0 and sends a value s̃1 s.t. s̃0 ⊕ s̃1 = σ̃1||σ̃2 where σ̃1, σ̃2 are two signatures
for to different messages. Since ANMZK does not commit to the signatures then the transcript computed
using LSnm correspond to a false instance, therefore for the adaptive-input PoK property of ΠOR, ANMZK

in the i-th right session chooses a statement x̃i and essentially completes the corresponding transcript of
LSL using the witness w̃i s.t. (x̃i, w̃i) ∈ RelL for i ∈ {1, . . . , poly(λ)}. For the above chain of implications
we are ensured that in all hybrids ANMZK uses the witnesses to complete the transcripts of ΠOR in the
right sessions. Therefore also in the simulated experiment, that corresponds to the last hybrid experiment,
the ANMZK behavior allows SimNMZK to extract the witness used by ANMZK (that is internally executed by
SimNMZK) using the extractor of ΠOR (that exists from the adaptive-PoK property enjoyed by ΠOR).

In order to prove that inH0, . . . ,H4 ANMZK does not commit to two signatures in any of the right sessions
we rely on the “mild” non-malleability and the honest-extraction property enjoyed by NM. More precisely,
in each hybrid experiment, we use the honest-extraction15 property to extract the signatures from the right
sessions (that by contradiction are committed using NM). During the proof we need to show that the rewinds
made by the honest-extractor do not interfere with the various reductions. Roughly speaking our security
proof works because only non-interactive primitives are used, therefore the rewinds made by the extractor
of NM do not rewind the challenger involved in the reduction. In particular, consider the hybrid H3 where

15Observe that in our case is sufficient that the extraction holds against honest sender, because for our security proof we only
need to be sure that the commitment computed using NM is not a commitment of signatures.

13

we switch from the adaptive-input Special HVZK simulator of LSnm to the honest prover procedure and H4

where we start to use adaptive-input Special HVZK simulator of LSL. In this two hybrid experiments in
order to prove that ANMZK does not commit to the signatures we rely on the adaptive-input Special HVZK
and the rewinds do not affect the reduction. Indeed when we rely on adaptive-input Special HVZK of LSL
(LSnm) the honest prover procedure of LSnm (LSL) can be used in order to complete the execution of ΠOR.
In this way the third round ls3

L (ls3
nm) can be kept fixed thus computing ls3

nm = ci ⊕ ls3
L (ls3

L = ci ⊕ ls3
nm) for

every ci that could be sent by ANMZK during the rewinds. It is not clear how to do such a security proof by
directly relying on the WI property of ΠOR. The formal proof for this lemma can be found in App. D.

Theorem 2. If OWFs exists, then NMZK is a delayed-input synchronous many-many NMZK AoK for NP.

Proof. The proof proceeds very similarly to the one showed for Theorem 1. The main difference between
these two proofs is that we now have to consider also polynomially many synchronous left sessions played
in parallel. Therefore the only difference between this proof and the one of Theorem 1 is that in the
reductions we need to rely on the security of a many-one non-malleable commitment scheme and on the
adaptive-input SHVZK that is closed under parallel composition. Therefore, when we make a reduction on
the adaptive-input SHVZK, we can simply use the parallel version of the primitives. Regarding a many-one
non-malleable commitment, we notice that using the same arguments of the security proof of Proposition
1 provided in [LPV08], it is possible to claim that a synchronous (one-one) non-malleable commitment is
also synchronous many-one non-malleable. Therefore no additional assumptions are required in order to
prove that NMZK is also delayed-input synchronous many-many NMZK. Note also that, the simulator needs
to extract the trapdoor (the signatures of two different messages) in all the left (synchronous) sessions
completed in the main thread. We can show that the extraction succeeds except with negligible probability
using the same arguments used in the security proof of Theorem 1.

4 Multi-Party Coin-Tossing Protocol

4.1 4-Round Secure Multi-Party Coin Tossing: ΠMPCT

The high-level idea of our protocol ΠMPCT significantly differs from the one of [GMPP16b] (e.g., we use our
4-round delayed-input synchronous many-many NMZK instead of 3-round 3-robust parallel non-malleable
commitment scheme). Similarly to [GMPP16b] our protocol simply consists of each party committing to a
random string r, which is opened in the last round along with a simulatable proof of correct opening given
to all parties independently. The output consists of the ⊕ of all opened strings. Let’s see in more details
how our ΠMPCT works. For our construction we use the following tools.

1. A non-interactive perfectly binding computationally hiding commitment scheme PBCOM = (Com,Dec).
2. A Σ-protocol BLL = (PL,VL) for the NP-language L = {com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1}

with Special HVZK simulator SimL. We uses two instantiations of BLL in order to construct the
protocol for the OR of two statements ΠOR as described earlier (Sec. C.2 for more details). ΠOR

is a proof system for the NP-language Lcom = {(com0, com1) : ∃ (dec,m) s.t. Dec(com0, dec,m) =
1 OR Dec(com1, dec,m) = 1} 16. Informally, by running ΠOR, one can prove the knowledge of the
message committed in com0 or in com1.

3. A 4-round delayed-input synchronous many-many NMZK NMZK = (PNMZK,VNMZK) for the following
NP-language

LNMZK = {((com0, com1),m) : ∀i ∈ {0, 1} ∃ deci s.t. Dec(comi, deci,m) = 1}.
16We use ΠOR in a non-black box way, but for ease of exposition sometimes we will refer to entire protocol ΠOR in order to

invoke the proof of knowledge property enjoyed by ΠOR.

14

Informally, by running NMZK, one can prove that 2 commitments contain the same message m.

4.2 ΠMPCT: Informal Description and Security Intuition

The high level description of our protocol between just two parties (A1, A2) is given in Fig. 3. For a formal
description of ΠMPCT we refer the reader to Sec. 4.3. In Fig. 3 we consider an execution of ΠMPCT that
goes from A1 to A2 (the execution from A2 to A1 is symmetric). We recall that the protocol is executed
simultaneously by both A1 and A2. The main idea is the following. Each party commits to his input using
two instantiations of a non-interactive commitment. More precisely we have that A1 computes two non-
interactive commitments com0 and com1 (along with their decommitment information dec0 and dec1) of the
message r1. Each party also runs ΠOR for the NP-language Lcom, from the first to the third round, in order
to prove knowledge of the message committed in com0 or in com1. In the last round each party sends his own
input (i.e. r1 for A1 and r2 for A2) and proves, using a delayed-input synchronous many-many non-malleable
ZK for the NP-language LNMZK, that messages committed using PBCOM were actually equal to that input
(i.e. r1 for A1 and r2 for A2). That is, A1 sends r1 and proves that com0 and com1 are valid commitments
of the message r1.

a0, a1 nmzk1

nmzk2

nmzk3

nmzk4

c

c0, z0, c1, z1

A1(r1) A2(r2)

r2
Output r = r1 ⊕ r2

com0, com1

– com0 and com1 are two non-interactive commitments of the message r1 computed using PBCOM.
– (a0, a1, c0, c1, z0, z1) is the transcript generated from an execution of the WIPoK ΠOR in which POR

proves the knowledge of either the message committed in com0 or in com1.
– (nmzk1, nmzk2, nmzk3, nmzk4) in the transcript generated from an execution of the delayed-input syn-

chronous many-many NMZK NMZK in which PNMZK proves that both com0 and com1 are valid
commitments of the message r1.

Figure 3: ΠMPCT: Informal description of the execution from A1 to A2. The execution from A2 to A1 is symmetric.

Intuition about the security of ΠMPCT. Let A∗1 be the corrupted party.
Informally the simulator Sim works as follows. Sim starts an interaction against A∗1 using as input a

random string y until the third round of ΠMPCT is received by A∗1. More precisely, in the first round he
computes two commitments com0 and com1 (along with their decommitment information dec0 and dec1) of
y, and runs POR using as a witness (dec1, y). After the 3rd round Sim extracts the input r∗1 of the corrupted
party A∗1 using the extractor EOR of ΠOR (that exists from the PoK property of ΠOR) and sends r∗1 to the
ideal world functionality. At this point Sim receives r from the ideal-world functionality, and completes the
execution of the 4th round by sending r2 = r ⊕ r∗1. We observe that Sim, in order to send a string r2 that
differs from y in the 4th round, has to cheat in NMZK. This is done by simply running the simulator of
NMZK. To prove the security of our scheme we will go through a sequence of hybrid experiments in order
to show that the output view of the adversary in the real world can be simulated in the ideal world by
Sim. The security proof strongly relies on the non-malleable zero knowledge property of NMZK. Indeed the
aim of NMZK is to ensure that the adversary does not maul the messages received from Sim. That is, the

15

behavior of A∗1 allows to extract, in every hybrid experiments that we will consider, the correct input of A∗1.
This holds even in case the commitments sent by Sim to A∗1 are commitments of a random string y, and the
value sent in the 4th round is inconsistent with the value committed in the first round.

4.3 Formal Description

Let P = {P1, . . . , Pn} be the set of parties. Furthermore, denote by (id1, . . . , idn)17 the unique identities of
parties {P1, . . . , Pn}, respectively. Let us denote by FMPCT : (1λ)n → {0, 1}λ the function FMPCT(r1, . . . , rn) =
r1⊕· · ·⊕ rn. The protocol starts with each party Pi choosing a random string ri for i = 1, . . . , n. It consists
of four rounds, i.e., all parties send messages in each round and the messages of all executions are seen
by every party. Following [GMPP16b] we describe the protocol between two parties (A1, A2) observing
that the real protocol actually consists of n simultaneous executions of a two-party coin-tossing protocol
ΠMPCT = (A1, A2) between parties (Pi, Pj) where Pi acts as A1 with input ri and Pj acts as A2 with input
rj (both are symmetric). Let the input of A1 be r1, and the input of A2 be r2. The set of messages enabling
A1 to learn the output are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by A1 and (m2,m4) are
sent by A2. Likewise, the set of messages enabling A2 to learn the output are denoted by (m̃1, m̃2, m̃3, m̃4)
where (m̃1, m̃3) are sent by A2 and (m̃2, m̃4) are sent by A1. Therefore, messages (ml, m̃l) are simultaneously
exchanged in the l-th round for l = 1, . . . , 4.

Protocol ΠMPCT. Common input: security parameter λ, instances length: `NMZK, `com.
Round 1. We first describe how A1 constructs m1.

1. Compute (com0, dec0)← Com(r1) and (com1, dec1)← Com(r1).
2. Compute a0 ← PL(1λ, com0, (dec0, r1)).
3. Pick c1 ← {0, 1}λ and compute (a1, z1)← SimL(1λ, com1, c1).
4. Run VNMZK on input 1λ and `NMZK thus obtaining the 1st round nmzk1 of NMZK.
5. Message m1 is defined to be (com0, com1, a0, a1, nmzk1).

Likewise, A2 performs the same action as A1 in order to construct m̃1 = (˜com0, ˜com1, ã0, ã1, ˜nmzk1).
Round 2. In this round A2 sends message m2 and A1 sends m̃2. We first describe how A2 constructs m2.

1. Run PNMZK on input 1λ, id2, `NMZK and nmzk1 thus obtaining the 2nd round nmzk2 of NMZK.
2. Pick c← {0, 1}λ.
3. Define message m2 = (c, nmzk2).

Likewise, A1 performs the same actions as A2 in the previous step to construct the message m̃2 = (c̃, ˜nmzk2).
Round 3. In this round A1 sends message m3 and A2 sends m̃3. A1 prepares m3 as follows.

1. Compute c0 = c⊕ c1 and z0 ← PL(c0).
2. Run VNMZK on input nmzk2 thus obtaining the 3rd round nmzk3 of NMZK.
3. Define m3 = (nmzk3, c0, c1, z0, z1

)
.

Likewise, A2 performs the same actions asA1 in the previous step to construct the message m̃3 = (˜nmzk3, c̃0, c̃1, z̃0, z̃1).
Round 4. In this round A2 sends message m4 and A1 sends m̃4. A2 prepares m4 as follows.

1. Check that the following conditions are satisfied: a) c = c0⊕ c1; b) the transcript a0, c0, z0 is accepting
w.r.t. the instance com0; c) the transcript a1, c1, z1 is accepting w.r.t. the instance com1. If one of the
check fails then output ⊥, otherwise continue with the following steps.

2. Set xNMZK = (˜com0, ˜com1, r2) and wNMZK = (˜dec0, ˜dec1).
3. Run PNMZK on input nmzk3, the statement to be proved xNMZK and the witness wNMZK s.t. (xNMZK, wNMZK) ∈

RelLNMZK
, thus obtaining the 4th round nmzk4 of NMZK.

17As discuss in the Definition 1 the use of the identifiers can be avoid, we use them, to uniformity of notation.

16

4. Define m4 = (r2, xNMZK, nmzk4).
Likewise, A1 performs the same actions asA2 in the previous step to construct the message m̃4 = (r1, x̃NMZK, ˜nmzk4).
Output computation of ΠMPCT. Check, for each party, if (nmzki1, nmzki2, nmzki3, nmzki4) is accepting for
VNMZK with respect to the instance xiNMZK (i = 1, . . . , n) and that all pairs of parties used the same inputs
(r1, . . . , rn). If so, output r = r1 ⊕ · · · ⊕ rn.

Theorem 3. If one-to-one OWFs exist, then the multi-party protocol ΠMPCT securely computes the multi-
party coin-tossing functionality with black-box simulation.

The formal security proof can be found in App. E.

5 Acknowledgments

We thank Giuseppe Persiano and Alessandra Scafuro for several discussions on delayed-input protocols.
Research supported in part by “GNCS - INdAM”, EU COST Action IC1306, NSF grant 1619348,

DARPA, US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award,
and Lockheed-Martin Corporation Research Award. The views expressed are those of the authors and do
not reflect position of the Department of Defense or the U.S. Government.

The work of 1st, 3rd and 4th authors has been done in part while visiting UCLA.

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-
optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture
Notes in Computer Science, pages 468–499. Springer, 2017.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In 43rd Symposium on Foundations of Computer Science (FOCS 2002),
16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages 345–355, 2002.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge arguments
based on any one-way function. In Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Konstanz, Germany,
May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 280–
305. Springer, 1997.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In In Proceedings of the
International Congress of Mathematicians, pages 1444–1454, 1986.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In YvoG. Desmedt, editor, Advances in Cryptology
— CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer
Berlin Heidelberg, 1994.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubramaniam, and
Ivan Visconti. 4-round resettably-sound zero knowledge. In Yehuda Lindell, editor, Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,

17

February 24-26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science, pages
192–216. Springer, 2014.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-
malleable commitments (and more) in 3 rounds. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III, volume
9816 of Lecture Notes in Computer Science, pages 270–299. Springer, 2016. Full version
https://eprint.iacr.org/2016/566.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round con-
current non-malleable commitments from one-way functions. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume
10402 of Lecture Notes in Computer Science, pages 127–157. Springer, 2017. Full version
https://eprint.iacr.org/2016/621.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal se-
cure two-party computation from trapdoor permutations. In Theory of Cryptography, Fifteenth
Theory of Cryptography Conference, TCC 2017, Baltimore, USA, November 12-15, 2017, Pro-
ceedings, Lecture Notes in Computer Science. Springer, 2017.

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way functions
and applications to resettable security. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 231–240. ACM, 2013.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Improved or-composition of sigma-protocols. In Eyal Kushilevitz and Tal Malkin, editors, The-
ory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part II, volume 9563 of Lecture Notes in Computer Science, pages
112–141. Springer, 2016. Full version http://eprint.iacr.org/2015/810.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.
Online/offline OR composition of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 63–92. Springer,
2016. Full version https://eprint.iacr.org/2016/175.

[Dam10] Ivan Damg̊ard. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf, 2010.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended ab-
stract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May
5-8, 1991, New Orleans, Louisiana, USA, pages 542–552, 1991.

[GKP+17] Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richelson, and Akshayaram Srinivasan. New
constructions of non-malleable commitments and applications. Private communication, 2017.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable
commitments: A black-box approach. In 53rd Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 51–60,
2012.

18

https://eprint.iacr.org/2016/566
https://eprint.iacr.org/2016/621
http://eprint.iacr.org/2015/810
https://eprint.iacr.org/2016/175
http://www.cs.au.dk/~ivan/Sigma.pdf

[GMPP16a] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. Personal
communication, August 2016.

[GMPP16b] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact
round complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 448–476. Springer,
2016.

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using
signatures. Journal of Cryptology, 19(2):169–209, 2006.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge uni-
versity press, 2009.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 695–704, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 1128–1141, 2016. Full version: Cryptol-
ogy ePrint Archive, Report 2015/1178.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach to non-
malleability. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 41–50, 2014. An updated full version
is available at http://eprint.iacr.org/2014/586.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party compu-
tation with a dishonest majority. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Sci-
ence, pages 578–595. Springer, 2003.

[Lin10] Yehuda Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/~lindell/

89-856/complete-89-856.pdf, 2010.

[LP11a] Huijia Lin and Rafael Pass. Concurrent non-malleable zero knowledge with adaptive inputs.
In Yuval Ishai, editor, Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in
Computer Science, pages 274–292. Springer, 2011.

[LP11b] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way
function. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
705–714. ACM, 2011.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-
malleable commitments from any one-way function. In Ran Canetti, editor, Theory of Cryp-
tography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008., volume 4948 of Lecture Notes in Computer Science, pages 571–588. Springer, 2008.

19

http://eprint.iacr.org/2014/586
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework
for concurrent security: universal composability from stand-alone non-malleability. In Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing,STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 179–188, 2009.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In
Advances in Cryptology - CRYPTO, 1990.

[MV16] Arno Mittelbach and Daniele Venturi. Fiat-shamir for highly sound protocols is instantiable. In
Vassilis Zikas and Roberto De Prisco, editors, Security and Cryptography for Networks - 10th
International Conference, SCN 2016, Amalfi, Italy, August 31 - September 2, 2016, Proceedings,
volume 9841 of Lecture Notes in Computer Science, pages 198–215. Springer, 2016.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous resettability from collision resistance. Elec-
tronic Colloquium on Computational Complexity (ECCC), 19:164, 2012.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 232–241. ACM, 2004.

[Pol16] Antigoni Polychroniadou. On the Communication and Round Complexity of Secure Computa-
tion. PhD thesis, Aarhus University, December 2016.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions and
applications. In Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 57–74, 2008.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryptographic
protocols. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Bal-
timore, MD, USA, May 22-24, 2005, pages 533–542, 2005.

[PR08] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM J. Comput., 38(2):702–752, 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way
functions. In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 403–418, 2009.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, pages 387–394, 1990.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science,
pages 566–598. Springer, 2001.

20

A Standard Definitions

Definition 2 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way if the following
two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary input
z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a 1-to-1 OWF if f(x) 6= f(y) ∀(x, y) ∈ {0, 1}?.

Definition 3 (Following the notation of [CPS13]). A triple of ppt algorithms (Gen,Sign,Ver) is called a
signature scheme if it satisfies the following properties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Ver(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for all auxiliary input z ∈ {0, 1}?
it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ Ver(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to the oracle Sign(s, ·).

Definition 4 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles,
where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We say that X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y , if for every ppt distinguisher D
there exists a negligible function ν such that for sufficiently large λ ∈ N,∣∣∣Prob

[
t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ, it is possible
to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical Indistinguishability.
This definition is the same as Definition 4 with the only difference that the distinguisher D is unbounded.
In this case use X ≡s Y to denote that two ensembles are statistically indistinguishable.

Definition 5 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Witness Indis-
tinguishable (WI) for a relation Rel if, for every malicious ppt verifier V?, there exists a negligible function
ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Prob [〈P(w),V?〉(x) = 1]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural adaptive-input variants, where
the adversarial verifier can select the statement and the witnesses adaptively, before the prover plays the
last round.

Definition 6 (Proof/argument system). A pair of ppt interactive algorithms Π = (P,V) constitute a proof
system (resp., an argument system) for an NP-language L, if the following conditions hold:

21

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:
Prob [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible function
ν such that for every x /∈ L and every z:

Prob [〈P?(z),V〉(x) = 1] < ν(|x|).
A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness if P

needs x and w only to compute the last round and V needs x only to compute the output. Before that, P and
V run having as input only the size of x. The notion of delayed-input completeness was defined in [CPS+16a].
An interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses a predetermined number
of coins (i.e. a random challenge) and sends the outcome to the prover. Moreover we say that the transcript
τ of an execution b = 〈P(z),V〉(x) is accepting if b = 1.

Definition 7 (Proof of Knowledge [LP11b]). A protocol Π = (P,V) that enjoys completeness is a proof
of knowledge (PoK) for the relation RelL if there exists a probabilistic expected polynomial-time machine E,
called the extractor, such that for every algorithm P?, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

Prob [〈P?r (z),V〉(x) = 1] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition holds
w.r.t. any ppt P?.

In our security proofs we make use of the following observation. An interactive protocol Π that enjoys the
property of completeness and PoK (AoK) is a proof (an argument) system. Indeed suppose by contradiction
that is not. By the definition of PoK (AoK) it is possible to extract the witness for every theorem x ∈ {0, 1}λ
proved by P?r with probability greater than Prob [〈P?r (z),V〉(x) = 1]; contradiction.

In this paper we also consider the adaptive-input PoK/AoK property for all the protocols that enjoy
delayed-input completeness. Adaptive-input PoK/AoK ensures that the PoK/AoK property still holds
when a malicious prover can choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol played between a prover P
and a verifier V on common input x and private input w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the
first message a and the third message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen, i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge length the number of bit of
c.

Definition 8 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for a relation RelL is a Σ-Protocol if
the following properties hold:

• Completeness: if (P,V) follow the protocol on input x and private input w to P s.t. (x,w) ∈ RelL, V
always accepts.

• Special soundness: if there exists a polynomial time algorithm such that, for any pair of accepting
transcripts on input x, (a, c1, z1), (a, c2, z2) where c1 6= c2, outputs witness w such that (x,w) ∈ RelL.

• Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt simulator algorithm Sim
that for any x ∈ L, security parameter λ and any challenge c works as follow: (a, z) ← Sim(1λ, x, c).
Furthermore, the distribution of the output of Sim is computationally indistinguishable from the distri-
bution of a transcript obtained when V sends c as challenge and P runs on common input x and any
w such that (x,w) ∈ RelL

18.

18Note that we require that the two transcripts are computationally indistinguishable as in [GMY06], instead of follow-
ing [CDS94] that requires the perfect indistinguishability between the two transcripts.

22

Definition 9. A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-input special
soundness if there exists a polynomial time algorithm such that, for any pair of accepting transcripts (a, c1, z1)
for input x1 and (a, c2, z2) for input x2 with c1 6= c2, outputs witnesses w1 and w2 such that (x1, w1) ∈ RelL
and (x2, w2) ∈ RelL.

Definition 10. A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-input Special
Honest Verifier Zero-knowledge (adaptive-input Special HVZK) if there exists a two phases ppt simulator
algorithm Sim that works as follow:

1. a← Sim(1λ, c, κ; ρ), where 1λ is the security parameter, c is the challenge κ is the size of the instance
to be proved and the randomness ρ;

2. z← Sim(x, ρ)19, where x is the instance to be proved.
Π is adaptive-input Special HVZK if any x ∈ L and for any c ∈ {0, 1}λ, the distribution of the transcripts
(a, c, z), computed by Sim, is computationally indistinguishable from the distribution of a transcript obtained
when V sends c as challenge and P runs on common input x and any w (available only in the third round)
such that (x,w) ∈ RelL.

A.1 Commitment Schemes

Definition 11 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme CS = (Sen,Rec)
is a two-phase protocol between two ppt interactive algorithms, a sender Sen and a receiver Rec. In the com-
mitment phase Sen on input a message m interacts with Rec to produce a commitment com, and the private
output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that Rec accepts
m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following properties
hold:

Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an execution
of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private output of Sen in
this phase.

• Decommitment phase20. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. ppt adversary) A
and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob
[

ExpHiding0
A,CS(λ) = 1

]
− Prob

[
ExpHiding1

A,CS(λ) = 1
] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during the com-
mitment phase by a possibly malicious unbounded (resp. malicious ppt) sender Sen? there exists a
negligible function ν such that Sen?, with probability at most ν(λ), outputs two decommitments (m0, d0)
and (m1, d1), with m0 6= m1, such that Rec accepts both decommitments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.

19To not overburden the notation we omit the randomness when we use the adaptive-input Special HVZK simulator
20In this paper we consider a non-interactive decommitment phase only.

23

When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we use the
following notation.

– Commitment phase. (com, dec) ← Com(m) denotes that com is the commitment of the message m and
dec represents the corresponding decommitment information.

– Decommitment phase. Dec(com, dec,m) = 1.

A.2 3-Round Honest-Extractable Commitment Schemes

Informally, a 3-round commitment scheme is honest-extractable if there exists an efficient extractor that
having black-box access to any efficient honest sender that successfully performs the commitment phase,
outputs the only committed string that can be successfully decommitted. We give now a definition that
follows the one of [PW09].

Definition 12 (Honest-Extractable Commitment Scheme). A perfectly (resp. statistically) binding com-
mitment scheme ExCS = (ExSen,ExRec) is an honest-extractable commitment scheme if there exists an
expected ppt extractor ExtCom that given oracle access to any honest sender ExSen, outputs a pair (τ,m)
such that the following two properties hold:

- Simulatability: τ is identically distributed to the view of ExSen (when interacting with an honest
ExRec) in the commitment phase.

- Extractability: the probability that there exists a decommitment of τ to a message m′, where m′ 6= m
is 0 (resp. negligible).

A.3 Non-Malleable Commitments

A commitment scheme involves two players: sender and receiver. Informally, it consists of two phases, a
commitment phase and a decommitment phase. In the commitment phase the sender, with a secret input
m, interacts with the receiver. In the end of this interaction we say that a commitment of the message m
has been computed. Moreover the receiver still does not know what m is (i.e. m is hidden) and at the same
time the sender can subsequently (i.e., during the decommitment phase) open this commitment only to m
(see Def. 11 for a formal definition of commitment scheme).

In order to define a non-malleable commitment we follow [LPV08, LPV09]. Let Π = (Sen,Rec) be a
statistically binding commitment scheme. And let λ be the security parameter. Consider a MiM adversary
A that, on auxiliary input z participates in a left and a right session. In the left sessions the MiM adversary
A interacts with Sen receiving commitment to value m using an identity id of its choice. In the right session
A interacts with Rec attempting to commit to a related value m̃ again using identity of its choice ĩd. If
the right commitment is invalid, or undefined, its value is set to ⊥. Furthermore, if ĩd = id then m̃ is also
set to ⊥ (i.e., a commitment where the adversary uses the same identity of the honest senders is considered
invalid). Let mimA,mΠ (z) denote a random variable that describes the values m̃ and the view of A in the
above experiment.

Definition 13. [Non-malleable commitment scheme [LPV08, LPV09]] A commitment scheme is non-malleable
with respect to commitment if, for every ppt MiM adversary A, for every m0 ∈ {0, 1}poly(λ) and m1 ∈
{0, 1}poly(λ) the following holds

{mimA,m0

Π (z)}z∈{0,1}? ≈ {mimA,m1

Π (z)}z∈{0,1}? .

We say that a commitment is valid or well formed if it admits a decommitment to a message m 6= ⊥.
For our propose we use a 4-round synchronous honest-extractable non-malleable commitment. That is, a

commitment scheme that enjoys 1) non-malleability only against synchronous adversaries, 2) is extractable
w.r.t. honest sender (honest-extractable) and 3) is public-coin. The non-malleable commitment Π provided

24

in Figure 2 of [GPR16] enjoys non-malleability against synchronous adversary (as proved in Theorem 1 of
[GPR16]), is public coin and can be instantiated in 4 rounds relying on OWFs (the protocol can be squeezed
to 3 rounds using one-to-one OWFs).

Also, as stated in Section 5 of [GPR16], given a commitment computed by the sender of Π one can
rewind the sender in order to obtain a new accepting transcript with the same first round (resp., first two
rounds if we consider the instantiation that relies on OWFs) in order to extract a message m. Moreover, if
the sender is honest, then it is possible to claim that m is the actual message committed by the sender. We
remark that we do not require any form of extractability against malicious senders.

B Definition of Secure Computation

Here we recall some useful definitions for our application. Our Multi-Party Computation (MPC) protocol
for coin tossing is secure in the same model used in [GMPP16b], therefore some definitions are taken almost
verbatim from [GMPP16b]. Always following Garg et al. we only recall the security definition for the the two
party case. The description naturally extends to multi party case as well (details can be found in [Gol09]).

B.1 Two-Party Computation

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs to pairs of
outputs (one for each party). We refer to such a process as a functionality and denote it F : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ where F = (F1, F2). That is, for every pair of inputs (x, y), the output-pair is a random
variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to obtain
F1(x, y) and the second party (with input y) wishes to obtain F2(x, y).

Adversarial behaviour. Loosely speaking, the aim of a secure two-party protocol is to protect an honest
party against dishonest behaviour by the other party. In this paper, we consider malicious adversaries
who may arbitrarily deviate from the specified protocol. When considering malicious adversaries, there
are certain undesirable actions that cannot be prevented. Specifically, a party may refuse to participate in
the protocol, may substitute its local input (and use instead a different input) and may abort the protocol
prematurely. One ramification of the adversary’s ability to abort, is that it is impossible to achieve fairness.
That is, the adversary may obtain its output while the honest party does not. In this work we consider a
static corruption model, where one of the parties is adversarial and the other is honest, and this is fixed
before the execution begins.

Communication channel. In our result we consider a secure simultaneous message exchange channel in
which all parties can simultaneously send messages over the channel at the same communication round but
allowing a rushing adversary. Moreover, we assume an asynchronous network21 where the communication is
open and delivery of messages is not guaranteed. For simplicity, we assume that the delivered messages are
authenticated. This can be achieved using standard methods.

Execution in the ideal model. An ideal execution proceeds as follows. Each party obtains an input,
denoted w (w = x for P1, and w = y for P2). An honest party always sends w to the trusted party. A
malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the trusted party. In case
it has obtained an input pair (x, y), the trusted party first replies to the first party with F1(x, y). Otherwise
(i.e., in case it receives only one valid input), the trusted party replies to both parties with a special symbol

21The fact that the network is asynchronous means that the messages are not necessarily delivered in the order which they
are sent.

25

⊥. In case the first party is malicious it may, depending on its input and the trusted party’s answer, decide
to stop the trusted party by sending it ⊥ after receiving its output. In this case the trusted party sends ⊥
to the second party. Otherwise (i.e., if not stopped), the trusted party sends F2(x, y) to the second party.
Outputs: An honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary (probabilistic polynomial-time computable) function of its initial input and
the message obtained from the trusted party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and let S = (S1, S2)
be a pair of non-uniform probabilistic expected polynomial-time machines (representing parties in the ideal
model). Such a pair is admissible if for at least one i ∈ {0, 1} we have that Si is honest (i.e., follows the
honest party instructions in the above-described ideal execution). Then, the joint execution of F under S
in the ideal model (on input pair (x, y) and security parameter λ), denoted IDEALF,S(z)(1

λ, x, y) is defined
as the output pair of S1 and S2 from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party) protocol
is executed (and there exists no trusted third party). In this case, a malicious party may follow an arbi-
trary feasible strategy; that is, any strategy implementable by non-uniform probabilistic polynomial-time
machines. In particular, the malicious party may abort the execution at any point in time (and when this
happens prematurely, the other party is left with no output). Let F be as above and let Π be a two-party
protocol for computing F . Furthermore, let A = (A1, A2) be a pair of non-uniform probabilistic polynomial-
time machines (representing parties in the real model). Such a pair is admissible if for at least one i ∈ {0, 1}
we have that Ai is honest (i.e., follows the strategy specified by Π). Then, the joint execution of Π under
A in the real model, denoted REALΠ,A(z)(1

λ), is defined as the output pair of A1 and A2 resulting from the
protocol interaction.

Definition 14 (secure two-party computation). Let F and Π be as above. Protocol Π is said to securely
compute F (in the malicious model) if for every pair of admissible non-uniform probabilistic polynomial-time
machines A = (A1, A2) that run with auxiliary input z for the real model, there exists a pair of admissible
non-uniform probabilistic expected polynomial-time machines S = (S1, S2) (that use z as auxiliary input) for
the ideal model, such that:

REALΠ,A(z)(1
λ) ≈ IDEALf,S(z)(1

λ).

C Special WIPoK

C.1 Improving the Soundness of LS

In this section we consider the 3-round WIPoK for the NP-complete language of graph Hamiltonicity (HC),
provided in [LS90], and we will refer to this construction as the LS protocol. An interesting property of this
WIPoK is that only the size of the statement need to be known before the last round by both the prover
and the verifier. We show that the LS protocol does not enjoys special soundness when the statement to be
proved is adaptively chosen by the prover in the last round. That is, if two accepting transcripts (that share
the first round) are provided w.r.t. to two different instances x0 and x1, then only the witness w for xb is
extracted (with b ∈ {0, 1}). More precisely, given the accepting transcript (ls1, ls2

0, ls
3
0) for the statement x0

and (ls1, ls2
1, ls

3
1) for the statement x1 (with ls2

0 6= ls2
1) then it could be that only wb can be extracted. We

provide a construction that overcomes this issue, allowing the extraction of the witnesses for both x0 and x1

thus obtaining a Σ-protocol where the special soundness holds even when the two accepting transcripts refer
to different theorems adaptively chosen in the last round. Following [CPS+16b] we refer to this property as
adaptive-input special soundness (see Definition 9).

26

Before showing why LS is not already adaptive-input special sound and how our construction works, we
briefly describe the LS protocol with one-bit challenge following [OV12].

Let P be prover and V the verifier. The common input of P and V is κ, that represents the number
of vertexes of the instance G to be proved. The graph G is represented by a κ × κ adjacency matrix MG
where MG[i][j] = 1 if there exists an edge between vertexes i and j in G. A non-edge position i,j is a pair
of vertexes that are not connected in G and for which MG[i][j] = 0.
- P picks a random κ-vertex cycle graph C and commits bit-by-bit to the corresponding adjacency matrix

using a statistically binding commitment scheme.
- V responds with a randomly chosen bit b.
- P on input the graph G and the Hamiltonian cycle w executes the following steps. If b = 0, P opens all

the commitments, showing that the matrix committed in the first round is actually an κ-vertex cycle.
If b = 1, P sends a permutation π mapping the vertex of C in G. Then it opens the commitment of
the adjacency matrix of C corresponding to the non-edges of the graph G.

- V accepts (outputs 1) if what he receives in the third round is consistent with the bit b that he was sent
in the second round.

Getting the answer for both b = 0 and b = 1 (w.r.t. to the same graph G) allows the extraction of the
cycle for G. The reason is the following. For b = 0 one gets the random cycle C. Then for b = 1 one gets
the permutation mapping the random cycle in the actual cycle that is given to P before the last message of
the protocol.

We now observe that a malicious prover P? could gives the answer for b = 0 w.r.t. to the graph G0 and the
answer for b = 1 w.r.t. the graph G1 (due to the delayed-input nature of LS). This means that even knowing
two accepting transcripts that share the first round, the permutation that maps the vertexes of C in G0 it
is not known. Therefore an efficient algorithm can only compute the cycle w1 of G1 and gets no information
about the Hamiltonian cycle of G0. Summing up, given the accepting transcripts (ls1, 0, ls3

0) for the graph G0

and (ls1, 1, ls3
1) for the graph G1, only the Hamiltonian cycle for G1 can be computed. That is, only the cycle

for the graph proved by P? to be Hamiltonian using as a second round the challenge 1 can be efficiently
computed. Starting from this observation, in order to allow an efficient algorithm to compute cycles for
both G0 and G1, we construct an improved version of LS that we denoted with LSimp = (P imp,V imp). LSimp

uses LS in a black-box way. For ease of exposition we use the following notation. ls1 ← P(1λ, κ; ρ) denotes
that P is executed on input the security parameter (in unary) 1λ, κ and the randomness ρ and gives in
output the first round of LS ls1. ls3 ← P(G,w, ls2, ρ) denotes that P has computed the third round of LS by
running on input the graph G, the cycle w for the graph G, the bit ls2 and the randomness used to compute
ls1. V(ls1, ls2, ls3, G) denotes the output of V on input ls1, ls2, ls3 and the graph G. Let κ be the number of
vertexes of the graph G to be proved, our LSimp = (P imp,V imp) works as follows.

1. P imp on input the security parameter λ, κ and the randomness ρ0||ρ1 computes ls1
0 ← P(1λ, κ; ρ0),

ls1
1 ← P(1λ, κ; ρ1) and sends (ls0

1, ls
1
1) to V imp.

2. V imp picks and sends a random bit b.
3. P imp, upon receiving b, on input the graph G and the Hamiltonian cycle w for G computes ls3

0 ←
P(G,w, b, ρ0), ls3

1 ← P(G,w, 1− b, ρ1) and sends (ls3
0, ls

3
1).

4. V imp accepts iff V(G, ls1
0, b, ls

3
0) = 1 and V(G, ls1

1, 1− b, ls3
1) = 1.

Theorem 4. Assuming one-to-one OWFs, LSimp is a Σ-protocol with adaptive-input Special HVZK simulator
and adaptive-input special soundness. Moreover LSimp is Zero Knowledge.

Proof. (Delayed-input) Completeness. The (delayed-input) completeness of LSimp comes from the
(delayed-input) completeness of LS.
Adaptive-input special soundness. Let us consider two accepting transcripts that share the first round
for LSimp:

(
(ls0, ls1), 0, (ls3

0, ls
3
1)
)

for the statement G and
(
(ls0, ls1), 1, (ls3

1
′
, ls3

1
′
)
)

for the statement G′. We can

isolate the sub-transcripts (ls0, 0, ls
3
0) and (ls0, 1, ls

3
0
′
) and observe that V(G, ls1

0, 0, ls
3
0) = 1 = V(G′ls1

0, 1, ls
3
0
′
).

27

From what we discuss before about LS we know that in this case the witness w for G′ can be extracted.
Also let us now consider the two sub-transcripts (ls1, 1, ls

3
1) and (ls1, 0, ls

3
1
′
). Also in this case, by observing

that V(G, ls1, 1, ls
3
1) = 1 = V(G′, ls1, 0, ls

3
1
′
), the cycle for G can be efficiently computed.

Adaptive-input Special HVZK. Following [MV16], we consider an adaptive-input Special HVZK sim-
ulator S associated to the LS’s protocol. This is equal to a Special HVZK simulator with the additional
property that the first round can be simulated without knowing the instance to be proved (see Definition 10).
In more details S works in two phases. In the first phase just 1λ, the challenge ls2, the number of vertexes
κ is used to output the first round ls1. We denote this phase using: ls1 ← S(1λ, ls2, κ). In the second phase
S takes as input the instance and output the third round ls3. We denote this phase using ls3 ← S(G). The
adaptive-input Special HVZK simulator S imp for LSimp just internally runs S two times, once using b and
once using 1− b as a challenge. In more details the two phase of S imp are the following.

1. S imp, on input 1λ, the challenge b, κ and the randomness ρb||ρ1−b, computes ls1
b ← S(1λ, b, κ; ρb),

ls1
1−b ← S(1λ, 1− b, κ; ρ1−b) and outputs (ls1

b , ls
1
1−b).

2. S imp, on input the graph G, ρ0 and ρ1 computes ls3
b ← S(G, ρb), ls3

1−b ← S(G, ρ1−b) and outputs
(ls3
b , ls

3
1−b).

The transcript
(
(ls1
b , ls

1
1−b), b, (ls3

b , ls
3
1−b)

)
output by S imp is is computationally indistinguishable from a

transcript computed by P imp (that uses as input an Hamiltonian cycle w of G) due to the security of the
underlying adaptive-input Special HVZK simulator S.
Zero-Knowledge. The ZK simulator of LSimp just needs to guess the bit b chosen by the adversarial verifier
and runs the adaptive-input Special HVZK simulator.

It is easy to see that (as for LS) if we consider λ parallel executions of LSimp then we obtain a protocol
LSλ that still enjoys adaptive-input completeness, adaptive-input special soundness, adaptive-input Special
HVZK. Moreover LSλ is WI. Formally, we can claim the following theorems.

Theorem 5. Assuming one-to-one OWFs, LSλ is a Σ-protocol with adaptive-input Special HVZK, adaptive-
input special soundness and WI.

Proof. Completeness, adaptive-input special soundness and adaptive-input Special HVZK come immediately
from the adaptive-input special soundness and adaptive-input Special HVZK of LSimp. The WI comes from
the observation that LSimp is WI (due to the zero knowledge property), and that WI is preserved under
parallel (and concurrent) composition.

Theorem 6. Assuming OWFs, LSλ is a 4-round public-coin interactive protocol with adaptive-input Special
HVZK, adaptive-input special soundness and WI.

Proof. The proof of this theorem just relies on the observation that in order to instantiate a statistically
binding commitment scheme using OWFs an additional round is required to compute the first round of
Naor’s commitment scheme [Nao91].

Observe that since Hamiltonicity is an NP-complete language, the above constructions work for any NP
language through NP reductions. For simplicity in the rest of the paper we will omit the NP reduction
therefore assuming that the above scheme works directly on a given NP-language L.

C.2 Combining (adaptive-input) Special HVZK PoK Through [CDS94]

In our paper we use the well known technique for composing two Σ-protocols to compute the OR for
compound statement [CDS94, GMY06]. In more details, let Π0 = (P0,V0) and Π1 = (P1,V1) be Σ-
protocols for the respective NP-relation RelL0 (with Special HVZK simulator Sim0) and RelL1 (with Special

28

HVZK simulator Sim1). Then it is possible to use Π0 and Π1 to construct ΠOR = (POR,VOR) for relation
Rel

OR
= {((x0, x1), w) : ((x0, w) ∈ RelL0) OR ((x1, w) ∈ RelL1)} that works as follows.

Protocol ΠOR = (POR,VOR): Let wb with b ∈ {0, 1} be s.t. (xb, wb) ∈ RelLb
. POR and VOR on common

input (x0, x1) and private input wb compute the following steps.
- POR computes ab ← Pb(1λ, xb, wb). Furthermore he picks c1−b ← {0, 1}λ and computes (a1−b, z1−b) ←

Sim1−b(1
λ, x1−b, c1−b). POR sends a0, a1 to VOR.

- VOR, upon receiving a0, a1 picks c← {0, 1}λ and sends c to POR.
- POR, upon receiving c computes cb = c1−b ⊕ c and computes zb ← Pb(cb). POR sends c0, c1, z0 z1 to VOR.
- VOR checks that the following conditions holds: c = c0⊕ c1, V0(x0, a0, c0, z0) = 1 and V1(x1, a1, c1, z1) = 1.

If all the checks succeed then outputs 1, otherwise outputs 0.

Theorem 7. ([CDS94]) Let Σ0 and Σ1 be two Σ-protocols, then ΠOR = (POR,VOR) is a Σ-protocol for
RelLOR

.

Theorem 8. ([Dam10]) Let Π = (P,V) be a Σ-protocol for relation RelL with negligible soundness error22,
then Π is a proof of knowledge for RelL.

In our work we instantiate ΠOR using as Π0 and Π1 the Blum’s protocol [Blu86] for the NP-complete
language for graph Hamiltonicity (that also is a Σ-Protocol). Therefore Th. 7 (and Th. 8) can be applied.

We also consider an instantiation of ΠOR using as Π = (P,V) our LSλ. If we instantiate ΠOR using
LSλ and the corresponding adaptive-input Special HVZK simulator LSλ, then ΠOR is adaptive-input special
soundness. More formally we can claim the following theorem.

Theorem 9. If ΠOR is instantiated using LSλ (and the corresponding adaptive-input Special HVZK simulator
Sλ), then ΠOR enjoys the delayed-input completeness and adaptive-input special sound for the NP-relation
RelLOR

.

Proof. The delayed-input completeness follows from the delayed-input completeness of LSλ.
Adaptive-input special soundness. Let us consider two accepting transcripts that share the first

round for ΠOR:
(
(π0, π1), π2, (π2

0, π
3
0, π

2
1, π

3
1)
)

for the statement (x0, x1) and
(
(π0, π1), π2′, (π2

0
′
, π3

0
′
, π2

1
′
π3

1
′
)
)

for the statement (x′0, x
′
1), where π2 6= π2′. We observe that since π2 6= π2′, π2 = π2

0⊕π2
1 and π2′ = π2

0
′⊕π2

1
′

it holds that either π2
0 6= π2

0
′

or π2
1 6= π2

1
′
. Suppose w.l.o.g. that π2

0 6= π2
0
′
. Then we are guaranteed from the

adaptive-input special soundness of LSλ that using the transcripts (π0, π
2
0, π

3
0) and (π0, π

2
0
′
, π3

0
′
) the values

(wa, wb) s.t. (x0, wa) ∈ RelL0 and (x′0, wb) ∈ RelL0 can be extracted in polynomial-time. The same arguments
can be used when π2

1 6= π2
1
′
.

Using a result of [CPS+16b] we can claim the following theorem.

Theorem 10. ΠOR instantiated using LSλ is adaptive-input PoK for the NP-relation RelLOR
.

It would be easy to prove that ΠOR is also WI, however in this paper we are not going to rely directly
on the WI property of ΠOR, in order to deal with the rewinding issue that we have described earlier. More
precisely, in the two main contributions of this paper we will use ΠOR (the one instantiated from Blum’s
protocol and the one instantiated using LSλ) in a non-black box way in order to prove the security of our
protocols. It will be crucial for our reduction to rely on the (adaptive-input) Special HVZK of Π0 and
Π1 instead of using directly the WI property of ΠOR. The intuitively reason is that it is often easier in a
reduction to rely on the security of a non-interactive primitive (like Special HVZK is) instead of an interactive
primitive (like WI). This is the reason why we use the OR composition of [CDS94, GMY06] combined with
the Blum’s protocol (or the LS protocol) instead of relying on the (adaptive-input) WI provided by a Blum’s
protocol (LS protocol).

22The soundness error represents the probability of a malicious prover to convince the verifier of a false statement.

29

In the rest of the paper, in order to rely on OWFs only, we sometimes use a four round version of Blum’s
and LS protocols. In this case there is an additional initial round that goes from the verifier to the prover
and corresponds to the first round of Naor’s commitment scheme [Nao91].

D Formal Proof of Lemma 2

In order to simplify the security proof, here we actually consider the notions of multi-SHVZK and multi-
hiding instead of adaptive-input Special HVZK and hiding. The only differences with the classical definition
of adaptive-input Special HVZK is the following. Let (ls1, ls3, x) be a challenge. The challenger of multi-
SHVZK picks a random bit b and compute an accepting transcript t = (ls1, ls2, ls3, ls4) for x. If b = 0
then t has been computed by using the honest prover procedure P, otherwise has been computed using
the adaptive-input Special HVZK simulator. The adversary, upon receiving t, either outputs his guess
b′ ∈ {0, 1}, or asks to receive another transcript t according to a new possibly challenge (ls1′ , ls3′, x′). Note
that the adversary can ask a polynomial number of transcripts according to different challenges before he
outputs b′. The adversary is successful if Prob [b = b′]− 1/2 is non-negligible in the security parameter. It
is easy to see that a protocol is adaptive-input Special HVZK iff it is multi-SHVZK.

The only differences with the classical definition of hiding is the following. Let m0 and m1 be the
challenge messages. The challenger of multi-hiding picks a random bit b and compute the commitment of
mb. The adversary, upon receiving the commitment, either outputs his guess b′ ∈ {0, 1}, or asks to receive
another commitment of mb (the latter step can be executed a polynomial number of times). The adversary
is successful if Prob [b = b′] − 1/2 is non-negligible in the security parameter. It is easy to see that a
commitment scheme is hiding iff it is multi-hiding.

We now reconsider the hybrid experimentsHk for k = 0, . . . , 4 described in the security proof of Lemma 1,
and we define an event SIGNMk foe each of these hybrids, details follow. For k = 0, . . . , 4 SIGNMk is the event
that the i-th right session of Hk(1λ, z) ANMZK successfully commits using NM to a message s̃0 and sends a
string s̃1 s.t. s̃0 ⊕ s̃1 = σ̃1||σ̃2 and σ̃1, σ̃2 are two signatures for two different messages w.r.t. the verification
key ṽk sent in the first round of the i-th right session for some i ∈ {1, . . . , poly(λ)}. Furthermore the i-th
right session is accepting and id 6= ĩdi for some i ∈ {1, . . . , poly(λ)}. We will show that the probability of
SIGNMk is negligible.

We start by reconsidering the hybrid experiment H0(1λ, z).

Claim 1. Prob [SIGNM0] < ν(λ) for some negligible function ν.

Suppose by contradiction that the right session where ANMZK commits to the signatures is the i-th right
session (with i ∈ {1, . . . , poly(λ)}), then we can construct an adversary AΣ that breaks the security of the
signature scheme Σ. Let ṽk be the challenge verification key. The adversary AΣ interacts against the MiM
adversary ANMZK in the left session as a honest prover does. In the rights sessions he acts as a honest
verifier does except for a i-th right session, for which he acts in the following way. In the i-th right session
ANMZK uses ṽk to compute the first round and the oracle Sign(s̃k, ·) to compute a signature σ̃1 of a message
˜msg1 sent by ANMZK in the second round. At the end of the execution AΣ extracts from the commitment
τ̃ = (ĩd, ñm1, ñm2, ñm3, ñm4) computed using NM two signatures σ̃1, σ̃2 for two different messages ˜msg1, ˜msg2

w.r.t. ṽk. ANMZK outputs σ̃2, ˜msg2. Observe that the extraction succeeds with non-negligible probability,
because by contradiction we are assuming that ANMZK commits (correctly) to two signatures in τ̃ . The proof
ends with the observation that Sign(s̃k, ·) is called only once.

The next hybrid that we reconsider is H1(1λ, z). We know from the proof of Lemma 1, that the
view of ANMZK in H0(1λ, z) is statistically close to the view of ANMZK in H1(1λ, z), this implies that
Prob [SIGNM1] < ν(λ) for some negligible function ν.

The next hybrid that we reconsider is H2(1λ, z). To prove that the probability of the event SIGNM2 is
negligible we use two different properties of NM. We cannot rely only on the non-malleability of NM because

30

this property holds only against a synchronous MiM. Therefore for the asynchronous case we need relay on
the multi-hiding of NM.

Claim 2. Prob [SIGNM2] < ν(λ) for some negligible function ν.

We demonstrate this claim arguing separately that a) a synchronous ANMZK, except with negligible
probability, does not commit to the pair of signatures in any of the synchronous right sessions; b) an
asynchronous ANMZK does not commit to the pair of signatures in any of the asynchronous right sessions.
In more details.

(a) Suppose by contradiction that the right session where the synchronous ANMZK commits to the sig-
natures with non-negligible probability in the i-th right session (with i ∈ {1, . . . , poly(λ)}). This
means that when PNMZK commits to the signatures in the left session ANMZK starts to commit to the
signatures with non-negligible probability in at least one synchronous right sessions. Based on this
observation we can construct a distinguisher Dnm and an adversary Anm that breaks the synchronous
non-malleability of NM. Let Cnm be the challenger of NM and let (m0,m1) be the two random challenge
messages.

In the left session Anm acts as PNMZK does with ANMZK according to both H2(1λ, z) and H1(1λ, z)
with the following differences: 1) Anm plays as proxy between Cnm and ANMZK w.r.t. messages of NM;
2) two signatures σ1, σ2 are extracted from the left session through rewinds; 3) during rewinds of the
left a random third round ñm3 is played to simulate the receiver of NM in the right sessions; 4) Anm

in the last round of the left session sends s1 s.t. s1 = m0 ⊕ σ1||σ2.

In the right sessions ANMZK acts as VNMZK does according to both H2(1λ, z) and H1(1λ, z) except
for the i-th right session. In this ANMZK acts as VNMZK does except for the messages of NM for
which he acts as a proxy between Cnm and ANMZK. Then Dnm, on input the message m̃ committed in
the i-th right session by Anm and his randomness, reconstructs the view of ANMZK and recovers the
messages s̃1 sent by ANMZK in the last round of the i-th right session. If s̃1 ⊕ m̃ = σ1||σ2 then Dnm

outputs a random bit, and 0 otherwise. Since by contradiction ANMZK commits to the signatures with
overwhelming probability in at least one right session only when PNMZK commits to the signatures,
then Dnm can tell apart which message has been committed by the MiM adversary Anm. We notice
that the reduction in the i-th right session queries the receiver of NM involved in the reduction only
once. This because during the extraction of the signatures, from the left session, all the messages ñm3

can be simulated by the reduction due to the public-coin property of NM.

(b) Suppose by contradiction that the right session where the asynchronous ANMZK commits with non-
negligible probability to the signatures is the i-th right session (with i ∈ {1, . . . , poly(λ)}), then we
construct an adversary AHiding that break the multi-hiding of NM. Let Cnm be the challenger of
NM. The adversary AHiding that we construct interacts with ANMZK in the left and the right sessions
according to both H2(1λ, z) and H1(1λ, z) for all messages except for the messages of NM. For these
messages AHiding acts as a proxy between ANMZK and the challenger CHiding in the left session. More
formally, against the challenger of multi-hiding CHiding, AHiding works as following.

1. Upon receiving the 1st round from ANMZK, AHiding sends two random messages m0,m1 as the
challenge message together with nm1 received from ANMZK to CHiding.

2. Upon receiving nm2 from CHiding, AHiding uses it to compute and send the 2nd round of NMZK to
ANMZK on the left.

3. Upon receiving the 3rd round from ANMZK, ANMZK extracts two valid signatures σ1, σ2 for two
different messages from the left session and sends nm3 received from ANMZK to CHiding.

31

4. Upon receiving nm4 from CHiding, AHiding uses nm4 to complete the left session against ANMZK

sending s1 s.t. s1 = m0 ⊕ σ1||σ2.

5. Consider the i-th right session. IfAHiding extracts from the commitment τ̃ = (ĩd, ñm1, ñm2, ñm3, ñm4)
two signatures σ̃1, σ̃2 for two different messages then he outputs 1, otherwise he outputs a random
bit.

It easy to see that if CHiding commits to m1 then, AZK acts as in H1(1λ, z), otherwise AZK acts as in
H2(1λ, z).

Observe that when AHiding rewinds the right sessions it could happen that also the left session is
rewound. This does not cause any problem, because if AHding has to play again the second round of
the left session he starts a new interaction against the challenger of multi-hiding executing all steps
described above starting from step 1. We also observe that all the sessions where the extraction on
the right rewinds CHiding are actually synchronized. Therefore, in that case we can rely on the non-
malleability of NM (following the part (a) of the proof of Claim 2). Finally note that in H2(1λ, z)
ASHVZK extracts two signatures from the left session with non-negligible probability, for the same
arguments provided in the proof of Lemma 1.

The next hybrid that we reconsider is H3(1λ, z). Also, in this hybrid we show that the probability of the
event SIGNM3 is negligible, otherwise we can break the multi-SHVZK of LSnm. In more details we prove the
following claim.

Claim 3. Prob [SIGNM3] < ν(λ) for some negligible function ν.

Suppose by contradiction that the right session where ANMZK commits to the signatures is the i-th right
session (with i ∈ {1, . . . , poly(λ)}), then we can construct an adversary ASHVZK against the multi-SHVZK
of LSnm. Let CSHVZK be the challenger for the security game of multi-SHVZK. ASHVZK works as following.

1. ASHVZK interacts with ANMZK in order to receive the first round and sends ls1
nm to CSHVZK.

2. Upon receiving ls2
nm from CSHVZK uses it to compute and send to ANMZK the second round according

to both H3(1λ, z) and H2(1λ, z).

3. Upon receiving the third round from ANMZK, ASHVZK extracts the signatures σ1, σ2 from the left session
and computes the fourth round nm4 of NM and sets s1 = σ1||σ2⊕s0, xnm = (vk, id, nm1, nm2, nm3, nm4, s1),
wnm = (decnm, s0, σ1, msg1, σ2, msg2). He sends to the challenger of the SHVZK CSHVZK the statement
xnm the witness wnm and the round ls3

nm received from ANMZK.

4. Upon receiving ls4
nm from CSHVZK he uses it to compute the last round of NMZK.

5. Consider the i-th right session. If ASHVZK extracts from the commitment τ̃ = (ĩd, ñm1, ñm2, ñm3, ñm4)
two signatures σ̃1, σ̃2 for two different messages then he outputs 1, otherwise he outputs a random bit.

It easy to see that if CSHVZK sends ls2
nm, ls

4
nm that are computed using the honest prover procedure of LSnm

then, AZK acts as in H3(1λ, z), otherwise he acts as in H2(1λ, z). Observe that when ASHVZK rewinds the
right session it could happen that also the left session is rewound. This does not cause any problem because
ASHVZK can keep fixed ls3

nm during the rewinds in order to complete an accepting transcript for ΠOR even
tough different third rounds of ΠOR are sent during the rewinds by ANMZK. More precisely when multiple
third rounds c1, c2, . . . , cpoly(λ) are received, ASHVZK just computes ls3

L
′

= ls3
nm ⊕ ci for i = 1, . . . , poly(λ)

and runs the honest prover procedure PL on input statement x, the witness w and the challenge ls3
L
′

thus

obtaining ls4
L
′
. In this way ASHVZK can complete the execution against ANMZK by sending in the fourth

round (ls4
L
′
, nm4, s1, ls

4
nm, x, xnm) without rewinding CSHVZK. We observe that a rewind made on the right

32

could rewind the entire left session. In this case the challenger needs to be invoked multiple times in order
to receive multiple transcripts w.r.t. ΠL. The multi-SHVZK allow to do such interaction against CSHVZK.
Finally note that in H3(1λ, z) ASHVZK extracts two signatures from the left session with non-negligible
probability, for the same arguments provided in the proof of Lemma 1.

The next hybrid that we reconsider is H4(1λ, z). Also, in this hybrid we show that the probability of the
event SIGNM4 is negligible, otherwise we can break the multi-SHVZK of LSL. In more details we prove the
following claim.

Claim 4. Prob [SIGNM4] < ν(λ) for some negligible function ν.

The security proof is almost equal to the security proof of Claim 3.
Note that H4(1λ, z) corresponds to the simulated experiment, that is the experiment where SimZK inter-

acts with the adversary ANMZK emulating both a prover in the left session and polynomially many verifiers
in the right sessions. From Claim 4 follows that, in the right sessions, ANMZK never commits (except with
negligible probability), using NM, to a message s̃0 and sends a value s̃1 s.t. s̃0⊕ s̃1 = σ̃1||σ̃2 where σ̃1, σ̃2 are
two signatures for to different messages. Since ANMZK does not commit to the signatures then the transcript
computed using LSnm corresponds to a false instance, therefore for the adaptive-input PoK property of ΠOR,
ANMZK in the i-th right session chooses a statement x̃i and essentially completes the corresponding transcript
of LSL using the witness w̃i s.t. (x̃i, w̃i) ∈ RelL for i = 1, . . . , poly(λ). For the above sequence of implications
we are ensured that in the simulated experiment ANMZK uses the witnesses to complete the transcripts of
LSL in the right sessions. Therefore the ANMZK behavior allows SimNMZK to extract the witnesses used by
ANMZK (that is internally executed by SimNMZK) using the extractor of LSL (that exists for the adaptive-PoK
property enjoyed by LSL).

This observations conclude the proof.

E Formal Proof of Theorem 3

Proof. Let P = {P1, . . . , Pn} be the set of parties participating in the execution of ΠMPCT. Also let P ∗ ⊆ P
be the set of parties corrupted by the adversary A. The simulator Sim only generates messages on behalf of
parties P \ P ∗. In particular, we show that for every adversary A there exists an “ideal” world adversary
Sim such that

REALΠMPCT,A(z)(1
λ) ≈ IDEALFMPCT,Sim(z)(1

λ).

We prove this claim by considering hybrid experiments H1, . . . ,H7 as described below. Without loss of
generality we will assume that party P1 is the only honest party since our protocol is secure against n − 1
corruptions. We denote the output of the parties in the hybrid experiment Hi with {OUTHi,A(z)(1

λ)}.
- The 1st hybrid experiment H1 is identical to the real execution. More specifically, H1 starts A with fresh

randomness and interacts with it as P1 would do using uniform randomness r1 as input. The output
of H1 consists of A’s view. We observe that, by construction, the output of A in the real execution is
identically distributed to H1. Moreover, all the messages generated on the behalf of P ∗ are honestly
computed with overwhelming probability due to the soundness of NMZK.

- The 2nd hybrid experimentH2 is identical toH1 except that this hybrid experiment also extracts the P ∗’s
inputs r∗2, . . . , r

∗
n. In order to obtain r∗2, . . . , r

∗
n, H2 runs the extractor EOR of ΠOR on each execution of

ΠOR made by a malicious party. Note that the existence of EOR is guaranteed from the adaptive-input
PoK property of ΠOR. If the extractor fails, then H2 aborts. At this point H2 completes the 4th round
and prepares the output exactly as H1

23.

23Also in this case we are considering an adversary that completes the execution of ΠMPCT against Sim with non-negligible
probability. In the case that the abort probability of the adversary is overwhelming then the security proof is already over.

33

{OUTH1,A(z)(1
λ)} and {OUTH2,A(z)(1

λ)} are statistically close, and the extraction is successful in
expected polynomial time, both claims follow from the adaptive-input PoK property of ΠOR. Observe
that we are guaranteed that what EOR outputs correspond to the input of the the malicious party,
from the fact that with non-negligible probability A correctly computes all the steps of ΠMPCT. More
precisely the soundness of NMZK ensures that the extracted values correspond to the r∗2, . . . , r

∗
n received

in the last round.
- The 3rd hybrid experimentH3 differs fromH2 in the way the transcript for the delayed-input synchronous

many-many NMZK NMZK is computed. More precisely in this hybrid experiment the simulator
SimNMZK for NMZK is used. Following [GMPP16b, ACJ17] the extraction of NMZK’s trapdoor and
the extraction of P ∗’s input are performed during the same steps. Observe that these two extraction
procedures do not interfere with each other, indeed they just rewind from the third to the second
round by sending a freshly generated second round.

The first property of SimNMZK (see Definition 1) ensures that {OUTH2,A(z)(1
λ)} is computation-

ally indistinguishable from {OUTH3,A(z)(1
λ)}. Moreover the second property enjoyed by SimNMZK

(simulation-extraction) ensures that in H3 the witnesses can be extracted from A (one witness for
every execution of NMZK made by every malicious P ∗i), therefore we are guaranteed that A correctly
computes all the steps of ΠMPCT. That is, the value r∗2, . . . , r

∗
n sent by the malicious party in the

last round are actually committed in the second round sent by A. It is important to observe that
in this hybrid experiment the probability that A completes the third round is negligible close to the
probability of completing the third round in H2 (otherwise the output of the two experiments would be
distinguishable). Therefore the probability that EOR works correctly in this experiment is negligibly
close to the probability that EOR works in H2. This holds because, following the Definition 7, the
probability of EOR to given in output a valid witness for the instance (com0, com1) is negligible close to
the probability that A completes an accepting third round.

- The 4th hybrid experiment H4 differs from H3 in the way com1 is computed. More precisely, instead of a
committing to r1 in com1 a commitment of a random string y is made. We claim that {OUTH3,A(z)(1

λ)}
and {OUTH4,A(z)(1

λ)} are computationally indistinguishable due to the computationally hiding of
PBCOM. We claim also that in H4 A still behaves correctly, indeed we can use the simulator extractor
SimNMZK in order to check whether the theorem proved by every party controlled by A using NMZK
are still true. If it is not the case, then we can make a reduction to the hiding of com1

24.
- The 5th hybrid experiment H5 follows the same steps of H4 except that the honest prover procedure

(PL), instead of the Special HVZK simulator (SimL), is used to compute the prover’s messages a1, z1

of the transcript τ1 = (a1, c1, z1) w.r.t. the instance com1.
Suppose now by contradiction that the output distributions of the hybrid experiments are dis-

tinguishable, then we can show a malicious verifier V? that distinguishes between a transcript τ1 =
(a1, c1, z1) computed using SimL and one computed using the honest prover procedure. In more details,
let CSHVZK be the challenger of the Special HVZK. V? picks c1 ← {0, 1}λ and sends c1 to CSHVZK. Upon
receiving a1, z1 from CSHVZK V? plays all the messages of ΠMPCT as in H4 (H5) except for the messages
of τ1 where he V? acts as a proxy between CSHVZK and P ?. At the end of the execution V? runs the
distinguisher D that distinguishes the output distribution of H4 from the output distribution of H5

and outputs what D outputs. We observe that if CSHVZK sends a simulated transcript then P ?2 acts as
in H4 otherwise he acts as in H5.

There is a subtlety in the above reduction V? runs the SimNMZK that rewinds from the third to the
second round. This means that V? has to be able to complete during the rewinds the third round while
receiving different challenges c1, . . . , cpoly(λ) w.r.t. ΠOR. Since we are splitting the challenge c, V? can
just keep fixed the value c1 reusing the same z1 (sent by CSHVZK) and computing an answer to a0 using

24In order to extract the witnesses for the theorems proved by every party controlled by A, SimNMZK needs to rewind also
from the 4th to the 3rd round, but this does not affect the reduction.

34

the knowledge of the decommitment information of com0. To argue that A correctly computes all the
steps of ΠMPCT, also in this hybrid experiment we can use the simulator-extractor SimNMZK to check
whether the theorem proved by A is still true. If it is not the case we can construct a reduction to the
Special HVZK property of BLL. Note that the rewinds of SimNMZK from the fourth to the third round
do not affect the reduction. Moreover, the fact that SimNMZK extracts the witnesses for the theorems
proved by every party controlled by A still ensures that A behaves honestly.

- H6 proceeds exactly as H5 except that the Special HVZK simulator (SimL), instead of honest procedure
(PL), is used to compute the prover’s messages a0, z0 of the transcript τ0 = (a0, c0, z0) w.r.t. the
instance com0.

We claim that {OUTH5,A(z)(1
λ)} and {OUTH6,A(z)(1

λ)} are computationally indistinguishable due

the same arguments used to prove that {OUTH4,A(z)(1
λ)} ≈ {OUTH5,A(z)(1

λ)}. Furthermore we claim
that A still behaves honestly for the same arguments given in H5.

- The 7th hybrid experiment H7 differs from H6 in the way com0 is computed. More precisely, instead
of committing to r1 in com0, a commitment of a random string y is computed. For the same argu-
ments used to prove that {OUTH3,A(z)(1

λ)} ≈ {OUTH4,A(z)(1
λ)}, we claim that {OUTH6,A(z)(1

λ)} ≈
{OUTH7,A(z)(1

λ)} and that A still behaves honestly. We observe that r1 appears only in the 4th round.
More precisely there is no relation between r1 and the values committed in H1. Therefore the security
proof is almost over. Indeed our simulator Sim proceeds as H7 until the 3rd round, then invokes the
functionality thus obtaining a value r and completes the 4th round of H7 setting r1 = r ⊕ · · · ⊕ r∗n.

35

	Introduction
	Our Contribution
	MPCT from NMZK
	Technical Overview on Our NMZK
	4-Round Secure Multi-Party Coin Tossing

	Definitions and Tools
	4-Round Delayed-Input NMZK from OWFs
	Our Protocol: NMZK.

	Multi-Party Coin-Tossing Protocol
	4-Round Secure Multi-Party Coin Tossing: MPCT
	MPCT: Informal Description and Security Intuition
	Formal Description

	Acknowledgments
	Standard Definitions
	Commitment Schemes
	3-Round Honest-Extractable Commitment Schemes
	Non-Malleable Commitments

	Definition of Secure Computation
	Two-Party Computation

	Special WIPoK
	Improving the Soundness of LS
	Combining (adaptive-input) Special HVZK PoK Through CDS94

	Formal Proof of Lemma 2
	Formal Proof of Theorem 3

